image of Language reconfiguration in bilinguals
Buy:$35.00 + Taxes



The present study investigated language inhibition and cross-language interference as two possible mechanisms of bilingual language control (BLC) that can be affected by Huntington’s disease (HD), a neurodegenerative disease (ND) affecting the striatum. To this aim, the study explored the performance of pre-symptomatic and early-stage HD patients in two experimental tasks meant to elicit cross-language interference and language inhibition, including a Stroop task and a language switching task. The results revealed dissociations between these two mechanisms, indicating that language activation or inhibition is related to HD pathology while cross-language interference is not. Switch costs in HD patients were greater than controls in low-demand control conditions of language switching (longer preparation time), while Stroop effects were similar between the two groups of participants. This result was interpreted as a difficulty in overcoming the excessive inhibition applied to non-target language. The BLC processes related to the striatum and subcortical structures are discussed.


Article metrics loading...

Loading full text...

Full text loading...


  1. Abutalebi, J., Annoni, J. M., Zimine, I., Pegna, A. J., Seghier, M. L., Lee-Jahnke, H., Lazeyras, F., Cappa, S. F., & Khateb, A.
    (2008) Language control and lexical competition in bilinguals: An event-related fMRI study. Cerebral Cortex, 18(7), 1496–1505.10.1093/cercor/bhm182
    https://doi.org/10.1093/cercor/bhm182 [Google Scholar]
  2. Abutalebi, J., Della Rosa, P. A., Gonzaga, A. K. C., Keim, R., Costa, A., & Perani, D.
    (2013) The role of the left putamen in multilingual language production. Brain and Language, 125(3), 307–315.10.1016/j.bandl.2012.03.009
    https://doi.org/10.1016/j.bandl.2012.03.009 [Google Scholar]
  3. Abutalebi, J., & Green, D. W.
    (2007) Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242–275.10.1016/j.jneuroling.2006.10.003
    https://doi.org/10.1016/j.jneuroling.2006.10.003 [Google Scholar]
  4. (2008) Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23(4), 557–582.10.1080/01690960801920602
    https://doi.org/10.1080/01690960801920602 [Google Scholar]
  5. (2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism: Language and Cognition, 19(April), 1–10.10.1017/S1366728916000225
    https://doi.org/10.1017/S1366728916000225 [Google Scholar]
  6. Abutalebi, J., Miozzo, M., & Cappa, S. F.
    (2000) Do subcortical structures control “language selection” in polyglots? Evidence from pathological language mixing. Neurocase, 6, 51–56.
    [Google Scholar]
  7. Aglioti, S., Beltramello, A., Girardi, F., & Fabbro, F.
    (1996) Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia. Brain : A Journal of Neurology, 119 (5), 1551–1564.10.1093/brain/119.5.1551
    https://doi.org/10.1093/brain/119.5.1551 [Google Scholar]
  8. Aglioti, S., & Fabbro, F.
    (1993) Paradoxical selective recovery in a bilingual aphasic following subcortical lesions. Neuroreport, 4(12), 1359–1362.10.1097/00001756‑199309150‑00019
    https://doi.org/10.1097/00001756-199309150-00019 [Google Scholar]
  9. Ali, N., Green, D. W., Kherif, F., Devlin, J. T., & Price, C. J.
    (2010) The Role of the Left Head of Caudate in Suppressing Irrelevant Words. Journal of Cognitive Neuroscience, 22(10), 2369–2386.10.1162/jocn.2009.21352
    https://doi.org/10.1162/jocn.2009.21352 [Google Scholar]
  10. Ansaldo, A. I., Saidi, L. G., & Ruiz, A.
    (2010) Model‐driven intervention in bilingual aphasia: Evidence from a case of pathological language mixing. Aphasiology, 24(2), 309–324.10.1080/02687030902958423
    https://doi.org/10.1080/02687030902958423 [Google Scholar]
  11. Aron, A. R.
    (2011) From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55–68.10.1016/j.biopsych.2010.07.024
    https://doi.org/10.1016/j.biopsych.2010.07.024 [Google Scholar]
  12. Aron, A. R., Schlaghecken, F., Fletcher, P. C., Bullmore, E. T., Eimer, M., Barker, R., Sahakian, B. J., Robbins, T. W.
    (2003) Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington’s disease. Brain, 126(3), 713–723.10.1093/brain/awg067
    https://doi.org/10.1093/brain/awg067 [Google Scholar]
  13. Aron, A. R., Watkins, L., Sahakian, B. J., Monsell, S., Barker, R. A., & Robbins, T. W.
    (2003) Task-Set Switching Deficits in Early-Stage Huntington’s Disease: Implications for Basal Ganglia Function. Journal of Cognitive Neuroscience, 15(5), 629–642.10.1162/jocn.2003.15.5.629
    https://doi.org/10.1162/jocn.2003.15.5.629 [Google Scholar]
  14. Baake, V., Reijntjes, R. H. A. M., Dumas, E. M., Thompson, J. C., & Roos, R. A. C.
    (2017) Cognitive decline in Huntington’s disease expansion gene carriers. Cortex, 95, 51–62.10.1016/j.cortex.2017.07.017
    https://doi.org/10.1016/j.cortex.2017.07.017 [Google Scholar]
  15. Branzi, F. M. , Della Rosa, P. A. , Canini, M. , Costa, A. , & Abutalebi, J.
    (2016) Language control in bilinguals: Monitoring and response selection. Cerebral Cortex, 26(6), 2367–2380.10.1093/cercor/bhv052
    https://doi.org/10.1093/cercor/bhv052 [Google Scholar]
  16. Braver, T. S.
    (2012) The variable nature of cognitive control: A dual-mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.10.1016/j.tics.2011.12.010
    https://doi.org/10.1016/j.tics.2011.12.010 [Google Scholar]
  17. Braver, T. S., Reynolds, J. R., & Donaldson, D. I.
    (2003) Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching. Neuron, 39(4), 713–726.10.1016/S0896‑6273(03)00466‑5
    https://doi.org/10.1016/S0896-6273(03)00466-5 [Google Scholar]
  18. Calabria, M., Costa, A., Green, D. W., & Abutalebi, J.
    (2018) Neural basis of bilingual language control. Ann N Y Acad Sci.10.1111/nyas.13879.
    https://doi.org/10.1111/nyas.13879 [Google Scholar]
  19. Calabria, M., Cattaneo, G., & Costa, A.
    (2017) It is time to project into the future: “Bilingualism in healthy and pathological aging.” Journal of Neurolinguistics, 43, 1–3.10.1016/j.jneuroling.2017.03.003
    https://doi.org/10.1016/j.jneuroling.2017.03.003 [Google Scholar]
  20. Calabria, M., Marne, P., Romero-Pinel, L., Juncadella, M., & Costa, A.
    (2014) Losing control of your languages: a case study. Cognitive Neuropsychology, 31(3), 266–286.10.1080/02643294.2013.879443
    https://doi.org/10.1080/02643294.2013.879443 [Google Scholar]
  21. Casey, B. J., Durston, S., & Fossella, J. A.
    (2001) Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research, 1(4), 267–282.10.1016/S1566‑2772(01)00013‑5
    https://doi.org/10.1016/S1566-2772(01)00013-5 [Google Scholar]
  22. Cattaneo, G., Calabria, M., Marne, P., Gironell, A., Abutalebi, J., & Costa, A.
    (2015) The role of executive control in bilingual language production: A study with Parkinson’s disease individuals. Neuropsychologia, 66, 99–110.10.1016/j.neuropsychologia.2014.11.006
    https://doi.org/10.1016/j.neuropsychologia.2014.11.006 [Google Scholar]
  23. Costa, A., & Santesteban, M.
    (2004) Lexical access in bilingual speech production: evidence from language switching in highly proficient bilinguals and L2 learners. J. Mem.Lang., 50, 491–511.10.1016/j.jml.2004.02.002
    https://doi.org/10.1016/j.jml.2004.02.002 [Google Scholar]
  24. Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., Aso, T., Urayama, S., Fukuyama, H., Stockton, K., Usui, K., Green, D. W., & Price, C. J.
    (2006) Language control in the bilingual brain. Science, 312(5779), 1537–1540.10.1126/science.1127761
    https://doi.org/10.1126/science.1127761 [Google Scholar]
  25. De Diego-Balaguer, R., Couette, M., Dolbeau, G., Dürr, A., Youssov, K., & Bachoud-Lévi, A. C.
    (2008) Striatal degeneration impairs language learning: Evidence from Huntington’s disease. Brain, 131(11), 2870–2881.10.1093/brain/awn242
    https://doi.org/10.1093/brain/awn242 [Google Scholar]
  26. De Pisapia, N., & Braver, T. S.
    (2006) A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69(10–12), 1322–1326.10.1016/j.neucom.2005.12.100
    https://doi.org/10.1016/j.neucom.2005.12.100 [Google Scholar]
  27. Domínguez D, J. F., Poudel, G., Stout, J. C., Gray, M., Chua, P., Borowsky, B., Egan, G. F., & Georgiou-Karistianis, N.
    (2017) Longitudinal changes in the fronto-striatal network are associated with executive dysfunction and behavioral dysregulation in Huntington’s disease: 30 months IMAGE-HD data. Cortex, 92, 139–149.10.1016/j.cortex.2017.04.001
    https://doi.org/10.1016/j.cortex.2017.04.001 [Google Scholar]
  28. Fabbro, F., Skrap, M., & Aglioti, S.
    (2000) Pathological switching between languages after frontal lesions in a bilingual patient. Journal of Neurology, Neurosurgery, and Psychiatry, 68(5), 650–652.10.1136/jnnp.68.5.650
    https://doi.org/10.1136/jnnp.68.5.650 [Google Scholar]
  29. Fink, A., & Goldrick, M.
    (2015) Pervasive benefits of preparation in language switching. Psychonomic Bulletin and Review, 22(3), 808–814.10.3758/s13423‑014‑0739‑6
    https://doi.org/10.3758/s13423-014-0739-6 [Google Scholar]
  30. Forster, K. I., & Forster, J. C.
    (2003) DMDX: a windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers : A Journal of the Psychonomic Society, Inc, 35(1), 116–124.10.3758/BF03195503
    https://doi.org/10.3758/BF03195503 [Google Scholar]
  31. Garcia-Caballero, A., Garcia-Lado, I., Gonzalez-Hermida, J., Area, R., Recimil, M. J., Juncos Rabadan, O., Lamas, S., Ozaita, G., & Jorge, F. J.
    (2007) Paradoxical recovery in a bilingual patient with aphasia after right capsuloputaminal infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 78(1), 89–91.10.1136/jnnp.2006.095406
    https://doi.org/10.1136/jnnp.2006.095406 [Google Scholar]
  32. Georgiou-Karistianis, N., Gray, M. A., Domínguez D, J. F., Dymowski, A. R., Bohanna, I., Johnston, L. A., Churchyard, A., Chua, P., Stout, J. C., & Egan, G. F.
    (2013) Automated differentiation of pre-diagnosis Huntington’s disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: The IMAGE-HD study. Neurobiology of Disease, 51, 82–92.10.1016/j.nbd.2012.10.001
    https://doi.org/10.1016/j.nbd.2012.10.001 [Google Scholar]
  33. Green, D. W.
    (1986) Control, activation, and resource: a framework and a model for the control of speech in bilinguals. Brain and Language, 27(2), 210–223.10.1016/0093‑934X(86)90016‑7
    https://doi.org/10.1016/0093-934X(86)90016-7 [Google Scholar]
  34. Green, D. W.
    (1998) Mental control of the bilingual lexico-semantic system. Bilingualism:Language and Cognition, 1, 67–81.10.1017/S1366728998000133
    https://doi.org/10.1017/S1366728998000133 [Google Scholar]
  35. Hervais-Adelman, A. G., Moser-Mercer, B., & Golestani, N.
    (2011) Executive control of language in the bilingual brain: Integrating the evidence from neuroimaging to neuropsychology. Frontiers in Psychology, 2: 234.10.3389/fpsyg.2011.00234
    https://doi.org/10.3389/fpsyg.2011.00234 [Google Scholar]
  36. Hinzen, W., Rosselló, J., Morey, C., Camara, E., Garcia-Gorro, C., Salvador, R., & de Diego-Balaguer, R.
    (2017) A systematic linguistic profile of spontaneous narrative speech in pre-symptomatic and early stage Huntington’s disease. Cortex, 100, 71–83.10.1016/j.cortex.2017.07.022
    https://doi.org/10.1016/j.cortex.2017.07.022 [Google Scholar]
  37. Kargieman, L., Herrera, E., Baez, S., García, A. M., Dottori, M., Gelormini, C., Manes, F., Gershanik, O., & Ibáñez, A.
    (2014) Motor-language coupling in Huntington’s disease families. Frontiers in Aging Neuroscience, 6: 122.10.3389/fnagi.2014.00122
    https://doi.org/10.3389/fnagi.2014.00122 [Google Scholar]
  38. Kieburtz, K.
    (1996) Unified Huntington’s disease rating scale: Reliability and consistency. Movement Disorders, 11(2), 136–142.10.1002/mds.870110204
    https://doi.org/10.1002/mds.870110204 [Google Scholar]
  39. Kong, A. P. H., Abutalebi, J., Lam, K. S. Y., & Weekes, B.
    (2014) Executive and language control in the multilingual brain. Behavioural Neurology 2014.10.1155/2014/527951
    https://doi.org/10.1155/2014/527951 [Google Scholar]
  40. Lawrence, A. D., Sahakian, B. J., & Robbins, T. W.
    (1998) Cognitive functions and corticostriatal circuits: Insights from Huntington’s disease. Trends in Cognitive Sciences, 2(10), 379–388.10.1016/S1364‑6613(98)01231‑5
    https://doi.org/10.1016/S1364-6613(98)01231-5 [Google Scholar]
  41. Leemann, B., Laganaro, M., Schwitter, V., & Schnider, A.
    (2007) Paradoxical switching to a barely-mastered second language by an aphasic patient. Neurocase, 13(3), 209–213.10.1080/13554790701502667
    https://doi.org/10.1080/13554790701502667 [Google Scholar]
  42. Lemiere, J., Decruyenaere, M., Evers-Kiebooms, G., Vandenbussche, E., & Dom, R.
    (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation. Journal of Neurology, 251(8), 935–942.10.1007/s00415‑004‑0461‑9
    https://doi.org/10.1007/s00415-004-0461-9 [Google Scholar]
  43. Luk, G., Green, D. W., Abutalebi, J., & Grady, C.
    (2011) Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27(10), 1479–1488.10.1080/01690965.2011.613209
    https://doi.org/10.1080/01690965.2011.613209 [Google Scholar]
  44. Ma, F., Li, S., & Guo, T.
    (2016) Reactive and proactive control in bilingual word production: An investigation of influential factors. Journal of Memory and Language, 86, 35–59.10.1016/j.jml.2015.08.004
    https://doi.org/10.1016/j.jml.2015.08.004 [Google Scholar]
  45. Mariën, P., Abutalebi, J., Engelborghs, S., & De Deyn, P. P.
    (2005) Pathophysiology of language switching and mixing in an early bilingual child with subcortical aphasia. Neurocase, 11 (6), 385–398.10.1080/13554790500212880
    https://doi.org/10.1080/13554790500212880 [Google Scholar]
  46. Maurage, P., Heeren, A., Lahaye, M., Jeanjean, A., Guettat, L., Verellen-Dumoulin, C., Halkin, S., Billieux, J., & Constant, E.
    (2017) Attentional impairments in Huntington’s Disease: A specific deficit for the executive conflict. Neuropsychology, 31(4), 424–436.10.1037/neu0000321
    https://doi.org/10.1037/neu0000321 [Google Scholar]
  47. Montoya, A., Price, B. H., Menear, M., & Lepage, M.
    (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. Journal of Psychiatry and Neuroscience, 31(1), 21–29.
    [Google Scholar]
  48. Mosca, M., & Clahsen, H.
    (2016) Examining language switching in bilinguals: The role of preparation time. Bilingualism, 19(2), 415–424.10.1017/S1366728915000693
    https://doi.org/10.1017/S1366728915000693 [Google Scholar]
  49. Paulsen, J. S., Long, J. D., Ross, C. A., Harrington, D. L., Erwin, C. J., Williams, J. K., et al.
    (2014) Prediction of manifest huntington’s disease with clinical and imaging measures: A prospective observational study. The Lancet Neurology, 13(12), 1193–1201.10.1016/S1474‑4422(14)70238‑8
    https://doi.org/10.1016/S1474-4422(14)70238-8 [Google Scholar]
  50. Peavy, G. M., Jacobson, M. W., Goldstein, J. L., Hamilton, J. M., Kane, A., Gamst, A. C., Lessing, S. L., Lee, J. C., & Corey-Bloom, J.
    (2010) Cognitive and functional decline in Huntington’s disease: Dementia criteria revisited. Movement Disorders, 25(9), 1163–1169.10.1002/mds.22953
    https://doi.org/10.1002/mds.22953 [Google Scholar]
  51. Peinemann, A., Schuller, S., Pohl, C., Jahn, T., Weindl, A., & Kassubek, J.
    (2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: A neuropsychological and voxel-based morphometric study. Journal of the Neurological Sciences, 239(1), 11–19.10.1016/j.jns.2005.07.007
    https://doi.org/10.1016/j.jns.2005.07.007 [Google Scholar]
  52. Philipp, A. M., Gade, M., & Koch, I.
    (2007) Inhibitory processes in language switching: Evidence from switching language-defined response sets. European Journal of Cognitive Psychology, 19(3), 395–416.10.1080/09541440600758812
    https://doi.org/10.1080/09541440600758812 [Google Scholar]
  53. Pliatsikas, C., & Luk, G.
    (2016) Executive control in bilinguals: A concise review on fMRI studies. Bilingualism: Language and Cognition, 53(9), 1689–1699.
    [Google Scholar]
  54. Protopapas, A.
    (2007) CheckVocal: a program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39(4), 859–862.10.3758/BF03192979
    https://doi.org/10.3758/BF03192979 [Google Scholar]
  55. Rao, J. A., Harrington, D. L., Durgerian, S., Reece, C., Mourany, L., Koenig, K., Lowe, M. J., Magnotta, V. A., Long, J. D., Johnson, H. J., Paulsen, J. S., & Rao, S. M.
    (2014) Disruption of response inhibition circuits in prodromal Huntington disease. Cortex, 58, 72–85.10.1016/j.cortex.2014.04.018
    https://doi.org/10.1016/j.cortex.2014.04.018 [Google Scholar]
  56. Rosas, H. D., Tuch, D. S., Hevelone, N. D., Zaleta, A. K., Vangel, M., Hersch, S. M., & Salat, D. H.
    (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Movement Disorders, 21(9), 1317–1325.10.1002/mds.20979
    https://doi.org/10.1002/mds.20979 [Google Scholar]
  57. Seo, R., Stocco, A., & Prat, C. S.
    (2018) The bilingual language network: Differential involvement of anterior cingulate, basal ganglia and prefrontal cortex in preparation, monitoring, and execution. NeuroImage, 174, 44–56.10.1016/j.neuroimage.2018.02.010
    https://doi.org/10.1016/j.neuroimage.2018.02.010 [Google Scholar]
  58. Shoulson, I., Kurlan, R., Rubin, R. J., Goldblatt, D., Behr, J., & Al, E.
    (1989) Assessment of functional capacity in neurodegenerative movement disorders: Huntington’s disease as a prototype. in Quantification of Neurologic Deficit, T. Munsat (Ed.), Butterworths, Stoneham, MA., 271–283.
  59. Skodda, S., Grönheit, W., Lukas, C., Bellenberg, B., Von Hein, S. M., Hoffmann, R., & Saft, C.
    (2016) Two different phenomena in basic motor speech performance in premanifest Huntington disease. Neurology, 86(14), 1329–1335.10.1212/WNL.0000000000002550
    https://doi.org/10.1212/WNL.0000000000002550 [Google Scholar]
  60. Smith, M. A., & Shadmehr, R.
    (2000) Error correction and the basal ganglia. Trends in Cognitive Sciences, 4(10), 367–369.10.1016/S1364‑6613(00)01540‑0
    https://doi.org/10.1016/S1364-6613(00)01540-0 [Google Scholar]
  61. Stout, J. C., Paulsen, J. S., Queller, S., Solomon, A. C., Whitlock, K. B., Campbell, J. C., Carlozzi, N., Duff, K., Beglinger, L. J., Langbehn, D. R., Johnson, S. A., Biglan, K. M., & Aylward, E. H.
    (2011) Neurocognitive Signs in Prodromal Huntington Disease. Neuropsychology, 25(1), 1–14.10.1037/a0020937
    https://doi.org/10.1037/a0020937 [Google Scholar]
  62. Tabrizi, S. J., Scahill, R. I., Owen, G., Durr, A., Leavitt, B. R., Roos, R. A., et al.
    (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. The Lancet Neurology, 12(7), 637–649.10.1016/S1474‑4422(13)70088‑7
    https://doi.org/10.1016/S1474-4422(13)70088-7 [Google Scholar]
  63. Teichmann, M., Darcy, I., Bachoud-Lévi, A. C., & Dupoux, E.
    (2009) The role of the striatum in phonological processing. Evidence from early stages of Huntington’s disease. Cortex, 45(7), 839–849.10.1016/j.cortex.2008.12.005
    https://doi.org/10.1016/j.cortex.2008.12.005 [Google Scholar]
  64. Teichmann, M., Dupoux, E., Cesaro, P., & Bachoud-Lévi, A. C.
    (2008) The role of the striatum in sentence processing: Evidence from a priming study in early stages of Huntington’s disease. Neuropsychologia, 46(1), 174–185.10.1016/j.neuropsychologia.2007.07.022
    https://doi.org/10.1016/j.neuropsychologia.2007.07.022 [Google Scholar]
  65. Teichmann, M., Gaura, V., Démonet, J. F., Supiot, F., Delliaux, M., Verny, C., Renou, P., Remy, P., & Bachoud-Lévi, A. C.
    (2008) Language processing within the striatum: Evidence from a PET correlation study in Huntington’s disease. Brain, 131(4), 1046–1056.10.1093/brain/awn036
    https://doi.org/10.1093/brain/awn036 [Google Scholar]
  66. Thompson, J. C., Poliakoff, E., Sollom, A. C., Howard, E., Craufurd, D., & Snowden, J. S.
    (2010) Automaticity and attention in Huntington’s disease: When two hands are not better than one. Neuropsychologia, 48(1), 171–178.10.1016/j.neuropsychologia.2009.09.002
    https://doi.org/10.1016/j.neuropsychologia.2009.09.002 [Google Scholar]
  67. Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., & Pinker, S.
    (1997) A Neural Dissociation within Language: Evidence that the Mental Dictionary Is Part of Declarative Memory, and that Grammatical Rules Are Processed by the Procedural System. Journal of Cognitive Neuroscience, 9(2), 266–276.10.1162/jocn.1997.9.2.266
    https://doi.org/10.1162/jocn.1997.9.2.266 [Google Scholar]
  68. Vandenberghe, W., Demaerel, P., Dom, R., & Maes, F.
    (2009) Diffusion-weighted versus volumetric imaging of the striatum in early symptomatic Huntington disease. Journal of Neurology, 256(1), 109–114.10.1007/s00415‑009‑0086‑0
    https://doi.org/10.1007/s00415-009-0086-0 [Google Scholar]
  69. Vandervert, L.
    (2016) The prominent role of the cerebellum in the learning, origin and advancement of culture. Cerebellum & Ataxias, 3(1), 10.10.1186/s40673‑016‑0049‑z
    https://doi.org/10.1186/s40673-016-0049-z [Google Scholar]
  70. Verhoef, K., Roelofs, A., & Chwilla, D. J.
    (2009) Role of inhibition in language switching: Evidence from event-related brain potentials in overt picture naming. Cognition, 110(1), 84–99.10.1016/j.cognition.2008.10.013
    https://doi.org/10.1016/j.cognition.2008.10.013 [Google Scholar]
  71. Wang, X., Wang, Y. Y., Jiang, T., Wang, Y. Z., & Wu, C. X.
    (2012) Direct evidence of the left caudate’s role in bilingual control: An intraoperative electrical stimulation study. Neurocase, 19(5), 462–469.10.1080/13554794.2012.701635
    https://doi.org/10.1080/13554794.2012.701635 [Google Scholar]
  72. Yang, J., Ye, J., Wang, R., Zhou, K., & Wu, Y. J.
    (2018) Bilingual Contexts Modulate the Inhibitory Control Network. Frontiers in Psychology, 9, 395.10.3389/fpsyg.2018.00395
    https://doi.org/10.3389/fpsyg.2018.00395 [Google Scholar]
  73. You, S. C., Geschwind, M. D., Sha, S. J., Apple, A., Satris, G., Wood, K. A., Possin, K. L.
    (2014) Executive functions in premanifest Huntington’s disease. Movement Disorders, 29(3), 405–409.10.1002/mds.25762
    https://doi.org/10.1002/mds.25762 [Google Scholar]
  74. Zou, L. , Ding, G. , Abutalebi, J. , Shu, H. , & Peng, D.
    (2016) Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48(9), 1197–1206.10.1016/j.cortex.2011.05.022
    https://doi.org/10.1016/j.cortex.2011.05.022 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error