1887
Volume 11, Issue 4
  • ISSN 1879-9264
  • E-ISSN: 1879-9272

Abstract

Abstract

The present study investigated language inhibition and cross-language interference as two possible mechanisms of bilingual language control (BLC) that can be affected by Huntington’s disease (HD), a neurodegenerative disease (ND) affecting the striatum. To this aim, the study explored the performance of pre-symptomatic and early-stage HD patients in two experimental tasks meant to elicit cross-language interference and language inhibition, including a Stroop task and a language switching task. The results revealed dissociations between these two mechanisms, indicating that language activation or inhibition is related to HD pathology while cross-language interference is not. Switch costs in HD patients were greater than controls in low-demand control conditions of language switching (longer preparation time), while Stroop effects were similar between the two groups of participants. This result was interpreted as a difficulty in overcoming the excessive inhibition applied to non-target language. The BLC processes related to the striatum and subcortical structures are discussed.

Loading

Article metrics loading...

/content/journals/10.1075/lab.18022.cal
2018-09-10
2021-10-21
Loading full text...

Full text loading...

References

  1. Abutalebi, J. , Annoni, J. M. , Zimine, I. , Pegna, A. J. , Seghier, M. L. , Lee-Jahnke, H. , Lazeyras, F. , Cappa, S. F. , & Khateb, A.
    (2008) Language control and lexical competition in bilinguals: An event-related fMRI study. Cerebral Cortex, 18(7), 1496–1505. 10.1093/cercor/bhm182
    https://doi.org/10.1093/cercor/bhm182 [Google Scholar]
  2. Abutalebi, J. , Della Rosa, P. A. , Gonzaga, A. K. C. , Keim, R. , Costa, A. , & Perani, D.
    (2013) The role of the left putamen in multilingual language production. Brain and Language, 125(3), 307–315. 10.1016/j.bandl.2012.03.009
    https://doi.org/10.1016/j.bandl.2012.03.009 [Google Scholar]
  3. Abutalebi, J. , & Green, D. W.
    (2007) Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242–275. 10.1016/j.jneuroling.2006.10.003
    https://doi.org/10.1016/j.jneuroling.2006.10.003 [Google Scholar]
  4. (2008) Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23(4), 557–582. 10.1080/01690960801920602
    https://doi.org/10.1080/01690960801920602 [Google Scholar]
  5. (2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism: Language and Cognition, 19(April), 1–10. 10.1017/S1366728916000225
    https://doi.org/10.1017/S1366728916000225 [Google Scholar]
  6. Abutalebi, J. , Miozzo, M. , & Cappa, S. F.
    (2000) Do subcortical structures control “language selection” in polyglots? Evidence from pathological language mixing. Neurocase, 6, 51–56.
    [Google Scholar]
  7. Aglioti, S. , Beltramello, A. , Girardi, F. , & Fabbro, F.
    (1996) Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia. Brain : A Journal of Neurology, 119 (5), 1551–1564. 10.1093/brain/119.5.1551
    https://doi.org/10.1093/brain/119.5.1551 [Google Scholar]
  8. Aglioti, S. , & Fabbro, F.
    (1993) Paradoxical selective recovery in a bilingual aphasic following subcortical lesions. Neuroreport, 4(12), 1359–1362. 10.1097/00001756‑199309150‑00019
    https://doi.org/10.1097/00001756-199309150-00019 [Google Scholar]
  9. Ali, N. , Green, D. W. , Kherif, F. , Devlin, J. T. , & Price, C. J.
    (2010) The Role of the Left Head of Caudate in Suppressing Irrelevant Words. Journal of Cognitive Neuroscience, 22(10), 2369–2386. 10.1162/jocn.2009.21352
    https://doi.org/10.1162/jocn.2009.21352 [Google Scholar]
  10. Ansaldo, A. I. , Saidi, L. G. , & Ruiz, A.
    (2010) Model‐driven intervention in bilingual aphasia: Evidence from a case of pathological language mixing. Aphasiology, 24(2), 309–324. 10.1080/02687030902958423
    https://doi.org/10.1080/02687030902958423 [Google Scholar]
  11. Aron, A. R.
    (2011) From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55–68. 10.1016/j.biopsych.2010.07.024
    https://doi.org/10.1016/j.biopsych.2010.07.024 [Google Scholar]
  12. Aron, A. R. , Schlaghecken, F. , Fletcher, P. C. , Bullmore, E. T. , Eimer, M. , Barker, R. , Sahakian, B. J. , Robbins, T. W.
    (2003) Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington’s disease. Brain, 126(3), 713–723. 10.1093/brain/awg067
    https://doi.org/10.1093/brain/awg067 [Google Scholar]
  13. Aron, A. R. , Watkins, L. , Sahakian, B. J. , Monsell, S. , Barker, R. A. , & Robbins, T. W.
    (2003) Task-Set Switching Deficits in Early-Stage Huntington’s Disease: Implications for Basal Ganglia Function. Journal of Cognitive Neuroscience, 15(5), 629–642. 10.1162/jocn.2003.15.5.629
    https://doi.org/10.1162/jocn.2003.15.5.629 [Google Scholar]
  14. Baake, V. , Reijntjes, R. H. A. M. , Dumas, E. M. , Thompson, J. C. , & Roos, R. A. C.
    (2017) Cognitive decline in Huntington’s disease expansion gene carriers. Cortex, 95, 51–62. 10.1016/j.cortex.2017.07.017
    https://doi.org/10.1016/j.cortex.2017.07.017 [Google Scholar]
  15. Branzi, F. M. , Della Rosa, P. A. , Canini, M. , Costa, A. , & Abutalebi, J.
    (2016) Language control in bilinguals: Monitoring and response selection. Cerebral Cortex, 26(6), 2367–2380. 10.1093/cercor/bhv052
    https://doi.org/10.1093/cercor/bhv052 [Google Scholar]
  16. Braver, T. S.
    (2012) The variable nature of cognitive control: A dual-mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. 10.1016/j.tics.2011.12.010
    https://doi.org/10.1016/j.tics.2011.12.010 [Google Scholar]
  17. Braver, T. S. , Reynolds, J. R. , & Donaldson, D. I.
    (2003) Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching. Neuron, 39(4), 713–726. 10.1016/S0896‑6273(03)00466‑5
    https://doi.org/10.1016/S0896-6273(03)00466-5 [Google Scholar]
  18. Calabria, M. , Costa, A. , Green, D. W. , & Abutalebi, J.
    (2018) Neural basis of bilingual language control. Ann N Y Acad Sci.10.1111/nyas.13879.
    https://doi.org/10.1111/nyas.13879 [Google Scholar]
  19. Calabria, M. , Cattaneo, G. , & Costa, A.
    (2017) It is time to project into the future: “Bilingualism in healthy and pathological aging.” Journal of Neurolinguistics, 43, 1–3. 10.1016/j.jneuroling.2017.03.003
    https://doi.org/10.1016/j.jneuroling.2017.03.003 [Google Scholar]
  20. Calabria, M. , Marne, P. , Romero-Pinel, L. , Juncadella, M. , & Costa, A.
    (2014) Losing control of your languages: a case study. Cognitive Neuropsychology, 31(3), 266–286. 10.1080/02643294.2013.879443
    https://doi.org/10.1080/02643294.2013.879443 [Google Scholar]
  21. Casey, B. J. , Durston, S. , & Fossella, J. A.
    (2001) Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research, 1(4), 267–282. 10.1016/S1566‑2772(01)00013‑5
    https://doi.org/10.1016/S1566-2772(01)00013-5 [Google Scholar]
  22. Cattaneo, G. , Calabria, M. , Marne, P. , Gironell, A. , Abutalebi, J. , & Costa, A.
    (2015) The role of executive control in bilingual language production: A study with Parkinson’s disease individuals. Neuropsychologia, 66, 99–110. 10.1016/j.neuropsychologia.2014.11.006
    https://doi.org/10.1016/j.neuropsychologia.2014.11.006 [Google Scholar]
  23. Costa, A. , & Santesteban, M.
    (2004) Lexical access in bilingual speech production: evidence from language switching in highly proficient bilinguals and L2 learners. J. Mem.Lang., 50, 491–511. 10.1016/j.jml.2004.02.002
    https://doi.org/10.1016/j.jml.2004.02.002 [Google Scholar]
  24. Crinion, J. , Turner, R. , Grogan, A. , Hanakawa, T. , Noppeney, U. , Devlin, J. T. , Aso, T. , Urayama, S. , Fukuyama, H. , Stockton, K. , Usui, K. , Green, D. W. , & Price, C. J.
    (2006) Language control in the bilingual brain. Science, 312(5779), 1537–1540. 10.1126/science.1127761
    https://doi.org/10.1126/science.1127761 [Google Scholar]
  25. De Diego-Balaguer, R. , Couette, M. , Dolbeau, G. , Dürr, A. , Youssov, K. , & Bachoud-Lévi, A. C.
    (2008) Striatal degeneration impairs language learning: Evidence from Huntington’s disease. Brain, 131(11), 2870–2881. 10.1093/brain/awn242
    https://doi.org/10.1093/brain/awn242 [Google Scholar]
  26. De Pisapia, N. , & Braver, T. S.
    (2006) A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69(10–12), 1322–1326. 10.1016/j.neucom.2005.12.100
    https://doi.org/10.1016/j.neucom.2005.12.100 [Google Scholar]
  27. Domínguez D, J. F. , Poudel, G. , Stout, J. C. , Gray, M. , Chua, P. , Borowsky, B. , Egan, G. F. , & Georgiou-Karistianis, N.
    (2017) Longitudinal changes in the fronto-striatal network are associated with executive dysfunction and behavioral dysregulation in Huntington’s disease: 30 months IMAGE-HD data. Cortex, 92, 139–149. 10.1016/j.cortex.2017.04.001
    https://doi.org/10.1016/j.cortex.2017.04.001 [Google Scholar]
  28. Fabbro, F. , Skrap, M. , & Aglioti, S.
    (2000) Pathological switching between languages after frontal lesions in a bilingual patient. Journal of Neurology, Neurosurgery, and Psychiatry, 68(5), 650–652. 10.1136/jnnp.68.5.650
    https://doi.org/10.1136/jnnp.68.5.650 [Google Scholar]
  29. Fink, A. , & Goldrick, M.
    (2015) Pervasive benefits of preparation in language switching. Psychonomic Bulletin and Review, 22(3), 808–814. 10.3758/s13423‑014‑0739‑6
    https://doi.org/10.3758/s13423-014-0739-6 [Google Scholar]
  30. Forster, K. I. , & Forster, J. C.
    (2003) DMDX: a windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers : A Journal of the Psychonomic Society, Inc, 35(1), 116–124. 10.3758/BF03195503
    https://doi.org/10.3758/BF03195503 [Google Scholar]
  31. Garcia-Caballero, A. , Garcia-Lado, I. , Gonzalez-Hermida, J. , Area, R. , Recimil, M. J. , Juncos Rabadan, O. , Lamas, S. , Ozaita, G. , & Jorge, F. J.
    (2007) Paradoxical recovery in a bilingual patient with aphasia after right capsuloputaminal infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 78(1), 89–91. 10.1136/jnnp.2006.095406
    https://doi.org/10.1136/jnnp.2006.095406 [Google Scholar]
  32. Georgiou-Karistianis, N. , Gray, M. A. , Domínguez D, J. F. , Dymowski, A. R. , Bohanna, I. , Johnston, L. A. , Churchyard, A. , Chua, P. , Stout, J. C. , & Egan, G. F.
    (2013) Automated differentiation of pre-diagnosis Huntington’s disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: The IMAGE-HD study. Neurobiology of Disease, 51, 82–92. 10.1016/j.nbd.2012.10.001
    https://doi.org/10.1016/j.nbd.2012.10.001 [Google Scholar]
  33. Green, D. W.
    (1986) Control, activation, and resource: a framework and a model for the control of speech in bilinguals. Brain and Language, 27(2), 210–223. 10.1016/0093‑934X(86)90016‑7
    https://doi.org/10.1016/0093-934X(86)90016-7 [Google Scholar]
  34. Green, D. W.
    (1998) Mental control of the bilingual lexico-semantic system. Bilingualism:Language and Cognition, 1, 67–81. 10.1017/S1366728998000133
    https://doi.org/10.1017/S1366728998000133 [Google Scholar]
  35. Hervais-Adelman, A. G. , Moser-Mercer, B. , & Golestani, N.
    (2011) Executive control of language in the bilingual brain: Integrating the evidence from neuroimaging to neuropsychology. Frontiers in Psychology, 2: 234. 10.3389/fpsyg.2011.00234
    https://doi.org/10.3389/fpsyg.2011.00234 [Google Scholar]
  36. Hinzen, W. , Rosselló, J. , Morey, C. , Camara, E. , Garcia-Gorro, C. , Salvador, R. , & de Diego-Balaguer, R.
    (2017) A systematic linguistic profile of spontaneous narrative speech in pre-symptomatic and early stage Huntington’s disease. Cortex, 100, 71–83. 10.1016/j.cortex.2017.07.022
    https://doi.org/10.1016/j.cortex.2017.07.022 [Google Scholar]
  37. Kargieman, L. , Herrera, E. , Baez, S. , García, A. M. , Dottori, M. , Gelormini, C. , Manes, F. , Gershanik, O. , & Ibáñez, A.
    (2014) Motor-language coupling in Huntington’s disease families. Frontiers in Aging Neuroscience, 6: 122. 10.3389/fnagi.2014.00122
    https://doi.org/10.3389/fnagi.2014.00122 [Google Scholar]
  38. Kieburtz, K.
    (1996) Unified Huntington’s disease rating scale: Reliability and consistency. Movement Disorders, 11(2), 136–142. 10.1002/mds.870110204
    https://doi.org/10.1002/mds.870110204 [Google Scholar]
  39. Kong, A. P. H. , Abutalebi, J. , Lam, K. S. Y. , & Weekes, B.
    (2014) Executive and language control in the multilingual brain. Behavioural Neurology 2014 10.1155/2014/527951
    https://doi.org/10.1155/2014/527951 [Google Scholar]
  40. Lawrence, A. D. , Sahakian, B. J. , & Robbins, T. W.
    (1998) Cognitive functions and corticostriatal circuits: Insights from Huntington’s disease. Trends in Cognitive Sciences, 2(10), 379–388. 10.1016/S1364‑6613(98)01231‑5
    https://doi.org/10.1016/S1364-6613(98)01231-5 [Google Scholar]
  41. Leemann, B. , Laganaro, M. , Schwitter, V. , & Schnider, A.
    (2007) Paradoxical switching to a barely-mastered second language by an aphasic patient. Neurocase, 13(3), 209–213. 10.1080/13554790701502667
    https://doi.org/10.1080/13554790701502667 [Google Scholar]
  42. Lemiere, J. , Decruyenaere, M. , Evers-Kiebooms, G. , Vandenbussche, E. , & Dom, R.
    (2004) Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation. Journal of Neurology, 251(8), 935–942. 10.1007/s00415‑004‑0461‑9
    https://doi.org/10.1007/s00415-004-0461-9 [Google Scholar]
  43. Luk, G. , Green, D. W. , Abutalebi, J. , & Grady, C.
    (2011) Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27(10), 1479–1488. 10.1080/01690965.2011.613209
    https://doi.org/10.1080/01690965.2011.613209 [Google Scholar]
  44. Ma, F. , Li, S. , & Guo, T.
    (2016) Reactive and proactive control in bilingual word production: An investigation of influential factors. Journal of Memory and Language, 86, 35–59. 10.1016/j.jml.2015.08.004
    https://doi.org/10.1016/j.jml.2015.08.004 [Google Scholar]
  45. Mariën, P. , Abutalebi, J. , Engelborghs, S. , & De Deyn, P. P.
    (2005) Pathophysiology of language switching and mixing in an early bilingual child with subcortical aphasia. Neurocase, 11 (6), 385–398. 10.1080/13554790500212880
    https://doi.org/10.1080/13554790500212880 [Google Scholar]
  46. Maurage, P. , Heeren, A. , Lahaye, M. , Jeanjean, A. , Guettat, L. , Verellen-Dumoulin, C. , Halkin, S. , Billieux, J. , & Constant, E.
    (2017) Attentional impairments in Huntington’s Disease: A specific deficit for the executive conflict. Neuropsychology, 31(4), 424–436. 10.1037/neu0000321
    https://doi.org/10.1037/neu0000321 [Google Scholar]
  47. Montoya, A. , Price, B. H. , Menear, M. , & Lepage, M.
    (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. Journal of Psychiatry and Neuroscience, 31(1), 21–29.
    [Google Scholar]
  48. Mosca, M. , & Clahsen, H.
    (2016) Examining language switching in bilinguals: The role of preparation time. Bilingualism, 19(2), 415–424. 10.1017/S1366728915000693
    https://doi.org/10.1017/S1366728915000693 [Google Scholar]
  49. Paulsen, J. S. , Long, J. D. , Ross, C. A. , Harrington, D. L. , Erwin, C. J. , Williams, J. K. , et al.
    (2014) Prediction of manifest huntington’s disease with clinical and imaging measures: A prospective observational study. The Lancet Neurology, 13(12), 1193–1201. 10.1016/S1474‑4422(14)70238‑8
    https://doi.org/10.1016/S1474-4422(14)70238-8 [Google Scholar]
  50. Peavy, G. M. , Jacobson, M. W. , Goldstein, J. L. , Hamilton, J. M. , Kane, A. , Gamst, A. C. , Lessing, S. L. , Lee, J. C. , & Corey-Bloom, J.
    (2010) Cognitive and functional decline in Huntington’s disease: Dementia criteria revisited. Movement Disorders, 25(9), 1163–1169. 10.1002/mds.22953
    https://doi.org/10.1002/mds.22953 [Google Scholar]
  51. Peinemann, A. , Schuller, S. , Pohl, C. , Jahn, T. , Weindl, A. , & Kassubek, J.
    (2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: A neuropsychological and voxel-based morphometric study. Journal of the Neurological Sciences, 239(1), 11–19. 10.1016/j.jns.2005.07.007
    https://doi.org/10.1016/j.jns.2005.07.007 [Google Scholar]
  52. Philipp, A. M. , Gade, M. , & Koch, I.
    (2007) Inhibitory processes in language switching: Evidence from switching language-defined response sets. European Journal of Cognitive Psychology, 19(3), 395–416. 10.1080/09541440600758812
    https://doi.org/10.1080/09541440600758812 [Google Scholar]
  53. Pliatsikas, C. , & Luk, G.
    (2016) Executive control in bilinguals: A concise review on fMRI studies. Bilingualism: Language and Cognition, 53(9), 1689–1699.
    [Google Scholar]
  54. Protopapas, A.
    (2007) CheckVocal: a program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39(4), 859–862. 10.3758/BF03192979
    https://doi.org/10.3758/BF03192979 [Google Scholar]
  55. Rao, J. A. , Harrington, D. L. , Durgerian, S. , Reece, C. , Mourany, L. , Koenig, K. , Lowe, M. J. , Magnotta, V. A. , Long, J. D. , Johnson, H. J. , Paulsen, J. S. , & Rao, S. M.
    (2014) Disruption of response inhibition circuits in prodromal Huntington disease. Cortex, 58, 72–85. 10.1016/j.cortex.2014.04.018
    https://doi.org/10.1016/j.cortex.2014.04.018 [Google Scholar]
  56. Rosas, H. D. , Tuch, D. S. , Hevelone, N. D. , Zaleta, A. K. , Vangel, M. , Hersch, S. M. , & Salat, D. H.
    (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Movement Disorders, 21(9), 1317–1325. 10.1002/mds.20979
    https://doi.org/10.1002/mds.20979 [Google Scholar]
  57. Seo, R. , Stocco, A. , & Prat, C. S.
    (2018) The bilingual language network: Differential involvement of anterior cingulate, basal ganglia and prefrontal cortex in preparation, monitoring, and execution. NeuroImage, 174, 44–56. 10.1016/j.neuroimage.2018.02.010
    https://doi.org/10.1016/j.neuroimage.2018.02.010 [Google Scholar]
  58. Shoulson, I. , Kurlan, R. , Rubin, R. J. , Goldblatt, D. , Behr, J. , & Al, E.
    (1989) Assessment of functional capacity in neurodegenerative movement disorders: Huntington’s disease as a prototype. in Quantification of Neurologic Deficit, T. Munsat (Ed.), Butterworths, Stoneham, MA., 271–283.
    [Google Scholar]
  59. Skodda, S. , Grönheit, W. , Lukas, C. , Bellenberg, B. , Von Hein, S. M. , Hoffmann, R. , & Saft, C.
    (2016) Two different phenomena in basic motor speech performance in premanifest Huntington disease. Neurology, 86(14), 1329–1335. 10.1212/WNL.0000000000002550
    https://doi.org/10.1212/WNL.0000000000002550 [Google Scholar]
  60. Smith, M. A. , & Shadmehr, R.
    (2000) Error correction and the basal ganglia. Trends in Cognitive Sciences, 4(10), 367–369. 10.1016/S1364‑6613(00)01540‑0
    https://doi.org/10.1016/S1364-6613(00)01540-0 [Google Scholar]
  61. Stout, J. C. , Paulsen, J. S. , Queller, S. , Solomon, A. C. , Whitlock, K. B. , Campbell, J. C. , Carlozzi, N. , Duff, K. , Beglinger, L. J. , Langbehn, D. R. , Johnson, S. A. , Biglan, K. M. , & Aylward, E. H.
    (2011) Neurocognitive Signs in Prodromal Huntington Disease. Neuropsychology, 25(1), 1–14. 10.1037/a0020937
    https://doi.org/10.1037/a0020937 [Google Scholar]
  62. Tabrizi, S. J. , Scahill, R. I. , Owen, G. , Durr, A. , Leavitt, B. R. , Roos, R. A. , et al.
    (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. The Lancet Neurology, 12(7), 637–649. 10.1016/S1474‑4422(13)70088‑7
    https://doi.org/10.1016/S1474-4422(13)70088-7 [Google Scholar]
  63. Teichmann, M. , Darcy, I. , Bachoud-Lévi, A. C. , & Dupoux, E.
    (2009) The role of the striatum in phonological processing. Evidence from early stages of Huntington’s disease. Cortex, 45(7), 839–849. 10.1016/j.cortex.2008.12.005
    https://doi.org/10.1016/j.cortex.2008.12.005 [Google Scholar]
  64. Teichmann, M. , Dupoux, E. , Cesaro, P. , & Bachoud-Lévi, A. C.
    (2008) The role of the striatum in sentence processing: Evidence from a priming study in early stages of Huntington’s disease. Neuropsychologia, 46(1), 174–185. 10.1016/j.neuropsychologia.2007.07.022
    https://doi.org/10.1016/j.neuropsychologia.2007.07.022 [Google Scholar]
  65. Teichmann, M. , Gaura, V. , Démonet, J. F. , Supiot, F. , Delliaux, M. , Verny, C. , Renou, P. , Remy, P. , & Bachoud-Lévi, A. C.
    (2008) Language processing within the striatum: Evidence from a PET correlation study in Huntington’s disease. Brain, 131(4), 1046–1056. 10.1093/brain/awn036
    https://doi.org/10.1093/brain/awn036 [Google Scholar]
  66. Thompson, J. C. , Poliakoff, E. , Sollom, A. C. , Howard, E. , Craufurd, D. , & Snowden, J. S.
    (2010) Automaticity and attention in Huntington’s disease: When two hands are not better than one. Neuropsychologia, 48(1), 171–178. 10.1016/j.neuropsychologia.2009.09.002
    https://doi.org/10.1016/j.neuropsychologia.2009.09.002 [Google Scholar]
  67. Ullman, M. T. , Corkin, S. , Coppola, M. , Hickok, G. , Growdon, J. H. , Koroshetz, W. J. , & Pinker, S.
    (1997) A Neural Dissociation within Language: Evidence that the Mental Dictionary Is Part of Declarative Memory, and that Grammatical Rules Are Processed by the Procedural System. Journal of Cognitive Neuroscience, 9(2), 266–276. 10.1162/jocn.1997.9.2.266
    https://doi.org/10.1162/jocn.1997.9.2.266 [Google Scholar]
  68. Vandenberghe, W. , Demaerel, P. , Dom, R. , & Maes, F.
    (2009) Diffusion-weighted versus volumetric imaging of the striatum in early symptomatic Huntington disease. Journal of Neurology, 256(1), 109–114. 10.1007/s00415‑009‑0086‑0
    https://doi.org/10.1007/s00415-009-0086-0 [Google Scholar]
  69. Vandervert, L.
    (2016) The prominent role of the cerebellum in the learning, origin and advancement of culture. Cerebellum & Ataxias, 3(1), 10. 10.1186/s40673‑016‑0049‑z
    https://doi.org/10.1186/s40673-016-0049-z [Google Scholar]
  70. Verhoef, K. , Roelofs, A. , & Chwilla, D. J.
    (2009) Role of inhibition in language switching: Evidence from event-related brain potentials in overt picture naming. Cognition, 110(1), 84–99. 10.1016/j.cognition.2008.10.013
    https://doi.org/10.1016/j.cognition.2008.10.013 [Google Scholar]
  71. Wang, X. , Wang, Y. Y. , Jiang, T. , Wang, Y. Z. , & Wu, C. X.
    (2012) Direct evidence of the left caudate’s role in bilingual control: An intraoperative electrical stimulation study. Neurocase, 19(5), 462–469. 10.1080/13554794.2012.701635
    https://doi.org/10.1080/13554794.2012.701635 [Google Scholar]
  72. Yang, J. , Ye, J. , Wang, R. , Zhou, K. , & Wu, Y. J.
    (2018) Bilingual Contexts Modulate the Inhibitory Control Network. Frontiers in Psychology, 9, 395. 10.3389/fpsyg.2018.00395
    https://doi.org/10.3389/fpsyg.2018.00395 [Google Scholar]
  73. You, S. C. , Geschwind, M. D. , Sha, S. J. , Apple, A. , Satris, G. , Wood, K. A. , Possin, K. L.
    (2014) Executive functions in premanifest Huntington’s disease. Movement Disorders, 29(3), 405–409. 10.1002/mds.25762
    https://doi.org/10.1002/mds.25762 [Google Scholar]
  74. Zou, L. , Ding, G. , Abutalebi, J. , Shu, H. , & Peng, D.
    (2016) Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48(9), 1197–1206. 10.1016/j.cortex.2011.05.022
    https://doi.org/10.1016/j.cortex.2011.05.022 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/lab.18022.cal
Loading
/content/journals/10.1075/lab.18022.cal
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error