1887
image of A new look at the question of the bilingual advantage
  • ISSN 1879-9264
  • E-ISSN 1879-9272
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Bilingualism has been associated with age-related cognitive advantage. It is important to study cognitive control mechanisms to better understand this phenomenon. We sought to examine proactive and reactive control, as measured by fast and slow responses, respectively. The neural underpinnings of these modes of control were studied in rigorously matched elderly monolinguals and bilinguals, using fMRI performance on a Simon task. The results indicate that bilinguals performed efficiently in proactive mode, as more activation and connectivity were observed in the monolinguals. On the other hand, the monolinguals functioned more efficiently in reactive mode, recruiting fewer brain areas than the bilinguals. These results suggest that bilinguals’ function effortlessly and economically in proactive mode, which is preserved through lifelong use of languages, whereas monolinguals are efficient in reactive mode, which they use more often as a consequence of aging. Thus, frequent use in daily life contributes to efficient functioning in the respective mode of control.

Loading

Article metrics loading...

/content/journals/10.1075/lab.18036.das
2019-04-29
2019-10-20
Loading full text...

Full text loading...

References

  1. Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S.
    (2014) Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35, 2126–2133. 10.1016/j.neurobiolaging.2014.03.010
    https://doi.org/10.1016/j.neurobiolaging.2014.03.010 [Google Scholar]
  2. Abutalebi, J., Cappa, S. F., & Perani, D.
    (2001) The bilingual brain as revealed by functional neuroimaging. Bilingualism: Language and Cognition, 4, 179–190. 10.1017/S136672890100027X
    https://doi.org/10.1017/S136672890100027X [Google Scholar]
  3. Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P. A., Parris, B. A., & Weekes, B. S.
    (2015) Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201–210. 10.1016/j.neuropsychologia.2015.01.040
    https://doi.org/10.1016/j.neuropsychologia.2015.01.040 [Google Scholar]
  4. Alladi, S., Bak, T. H., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A. K., … & Kaul, S.
    (2013) Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology, 81, 1938–1944. 10.1212/01.wnl.0000436620.33155.a4
    https://doi.org/10.1212/01.wnl.0000436620.33155.a4 [Google Scholar]
  5. Ansaldo, A. I., Ghazi-Saidi, L., & Adrover-Roig, D.
    (2015) Interference control in elderly bilinguals: Appearances can be misleading. Journal of Clinical and Experimental Neuropsychology, 37, 455–470. 10.1080/13803395.2014.990359
    https://doi.org/10.1080/13803395.2014.990359 [Google Scholar]
  6. Appelbaum, L. G., Boehler, C. N., Davis, L. A., Won, R. J., & Woldorff, M. G.
    (2014) The dynamics of proactive and reactive cognitive control processes in the human brain. Journal of Cognitive Neuroscience, 26, 1021–1038. 10.1162/jocn_a_00542
    https://doi.org/10.1162/jocn_a_00542 [Google Scholar]
  7. Bak, T. H., Vega-Mendoza, M., & Sorace, A.
    (2014) Never too late? An advantage on tests of auditory attention extends to late bilinguals. Frontiers in Psychology, 5, 485. 10.3389/fpsyg.2014.00485
    https://doi.org/10.3389/fpsyg.2014.00485 [Google Scholar]
  8. Berroir, P., Ghazi-Saidi, L., Dash, T., Adrover-Roig, D., Benali, H., & Ansaldo, A. I.
    (2017) Interference control at the response level: Functional networks reveal higher efficiency in the bilingual brain. Journal of Neurolinguistics, 43, 4–16. 10.1016/j.jneuroling.2016.09.007
    https://doi.org/10.1016/j.jneuroling.2016.09.007 [Google Scholar]
  9. Bialystok, E., Craik, F. I., & Freedman, M.
    (2007) Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459–464. 10.1016/j.neuropsychologia.2006.10.009
    https://doi.org/10.1016/j.neuropsychologia.2006.10.009 [Google Scholar]
  10. Bialystok, E., Craik, F. I., Green, D. W., & Gollan, T. H.
    (2009) Bilingual minds. Psychological Science in the Public Interest, 10, 89–129. 10.1177/1529100610387084
    https://doi.org/10.1177/1529100610387084 [Google Scholar]
  11. Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M.
    (2004) Bilingualism, aging, and cognitive control: Evidence from the Simon task. Psychology and Aging, 19, 290–303. 10.1037/0882‑7974.19.2.290
    https://doi.org/10.1037/0882-7974.19.2.290 [Google Scholar]
  12. Bialystok, E., Craik, F. I., & Luk, G.
    (2012) Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16, 240–250. 10.1016/j.tics.2012.03.001
    https://doi.org/10.1016/j.tics.2012.03.001 [Google Scholar]
  13. Blumenfeld, H. K., & Marian, V.
    (2013) Parallel language activation and cognitive control during spoken word recognition in bilinguals. Journal of Cognitive Psychology, 25, 547. 10.1080/20445911.2013.812093
    https://doi.org/10.1080/20445911.2013.812093 [Google Scholar]
  14. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D.
    (2001) Conflict monitoring and cognitive control. Psychological review, 108(3), 624–652. 10.1037/0033‑295X.108.3.624
    https://doi.org/10.1037/0033-295X.108.3.624 [Google Scholar]
  15. Braver, T. S.
    (2012) The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. 10.1016/j.tics.2011.12.010
    https://doi.org/10.1016/j.tics.2011.12.010 [Google Scholar]
  16. Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., … & Petersen, S. E.
    (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage, 14, 48–59. 10.1006/nimg.2001.0791
    https://doi.org/10.1006/nimg.2001.0791 [Google Scholar]
  17. Braver, T. S., Gray, J. R., & Burgess, G. C.
    (2007) Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. InA. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp.76–106). New York: Oxford University Press.
    [Google Scholar]
  18. Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M.
    (2009) Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106, 7351–7356. 10.1073/pnas.0808187106
    https://doi.org/10.1073/pnas.0808187106 [Google Scholar]
  19. Braver, T. S., & West, R.
    (2008) Working memory, executive control, and aging. InF. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp.311–372). New York: Psychology Press.
    [Google Scholar]
  20. Burgess, G. C., & Braver, T. S.
    (2010) Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence. PloS one, 5(9), e12861, 1–11. 10.1371/journal.pone.0012861
    https://doi.org/10.1371/journal.pone.0012861 [Google Scholar]
  21. Cai, W., Ryali, S., Chen, T., Li, C. S. R., & Menon, V.
    (2014) Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. Journal of Neuroscience, 34, 14652–14667. 10.1523/JNEUROSCI.3048‑14.2014
    https://doi.org/10.1523/JNEUROSCI.3048-14.2014 [Google Scholar]
  22. Calabria, M., Hernandez, M., Martin, C. D., & Costa, A.
    (2011) When the tail counts: The advantage of bilingualism through the ex-Gaussian distribution analysis. Frontiers in Psychology, 2, 250. 10.3389/fpsyg.2011.00250
    https://doi.org/10.3389/fpsyg.2011.00250 [Google Scholar]
  23. Chouiter, L., Holmberg, J., Manuel, A. L., Colombo, F., Clarke, S., Annoni, J. M., & Spierer, L.
    (2016) Partly segregated cortico-subcortical pathways support phonologic and semantic verbal fluency: A lesion study. Neuroscience, 329, 275–283. 10.1016/j.neuroscience.2016.05.029
    https://doi.org/10.1016/j.neuroscience.2016.05.029 [Google Scholar]
  24. Colzato, L. S., Bajo, M. T., van den Wildenberg, W., Paolieri, D., Nieuwenhuis, S., La Heij, W., & Hommel, B.
    (2008) How does bilingualism improve executive control? A comparison of active and reactive inhibition mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 302–312.
    [Google Scholar]
  25. Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N.
    (2009) On the bilingual advantage in conflict processing: Now you see it, now you don’t. Cognition, 113, 135–149. 10.1016/j.cognition.2009.08.001
    https://doi.org/10.1016/j.cognition.2009.08.001 [Google Scholar]
  26. Czernochowski, D., Nessler, D., & Friedman, D.
    (2010) On why not to rush older adults – Relying on reactive cognitive control can effectively reduce errors at the expense of slowed responses. Psychophysiology, 47, 637–646.
    [Google Scholar]
  27. Dash, T., & Joanette, Y.
    (2016) Neurocognitive markers of aging. InN. Pachana (Ed.), Encyclopedia of geropsychology (pp.1–10). Singapore: Springer. 10.1007/978‑981‑287‑080‑3
    https://doi.org/10.1007/978-981-287-080-3 [Google Scholar]
  28. Dash, T., & Kar, B. R.
    (2014) Bilingual language control and general purpose cognitive control among individuals with bilingual aphasia: Evidence based on negative priming and flanker tasks. Behavioural Neurology 2014, 679–706.
    [Google Scholar]
  29. Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R.
    (2007) Que PASA? The posterior – anterior shift in aging. Cerebral Cortex, 18, 1201–1209. 10.1093/cercor/bhm155
    https://doi.org/10.1093/cercor/bhm155 [Google Scholar]
  30. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … & Albert, M. S.
    (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980. 10.1016/j.neuroimage.2006.01.021
    https://doi.org/10.1016/j.neuroimage.2006.01.021 [Google Scholar]
  31. Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., … & Benali, H.
    (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199, 61–75. 10.1016/j.bbr.2008.11.012
    https://doi.org/10.1016/j.bbr.2008.11.012 [Google Scholar]
  32. Doyon, J., & Benali, H.
    (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167. 10.1016/j.conb.2005.03.004
    https://doi.org/10.1016/j.conb.2005.03.004 [Google Scholar]
  33. Edwards, B. G., Barch, D. M., & Braver, T. S.
    (2010) Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Frontiers in Human Neuroscience, 4, 32.
    [Google Scholar]
  34. Fassbender, C., Hester, R., Murphy, K., Foxe, J. J., Foxe, D. M., & Garavan, H.
    (2009) Prefrontal and midline interactions mediating behavioural control. European Journal of Neuroscience, 29, 181–187.
    [Google Scholar]
  35. Fassbender, C., Scangos, K., Lesh, T. A., & Carter, C. S.
    (2014) RT distributional analysis of cognitive-control-related brain activity in first-episode schizophrenia. Cognitive, Affective, and Behavioral Neuroscience, 14, 175–188. 10.3758/s13415‑014‑0252‑4
    https://doi.org/10.3758/s13415-014-0252-4 [Google Scholar]
  36. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E.
    (2009) The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101, 3270–3283. 10.1152/jn.90777.2008
    https://doi.org/10.1152/jn.90777.2008 [Google Scholar]
  37. Gerchen, M. F., & Kirsch, P.
    (2017) Combining task-related activation and connectivity analysis of fMRI data reveals complex modulation of brain networks. Human Brain Mapping, 38, 5726–5739. 10.1002/hbm.23762
    https://doi.org/10.1002/hbm.23762 [Google Scholar]
  38. Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., & Smith, C. D.
    (2013) Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33, 387–396. 10.1523/JNEUROSCI.3837‑12.2013
    https://doi.org/10.1523/JNEUROSCI.3837-12.2013 [Google Scholar]
  39. Grady, C. L.
    (2008) Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124, 127–144. 10.1196/annals.1440.009
    https://doi.org/10.1196/annals.1440.009 [Google Scholar]
  40. Grady, C. L., Luk, G., Craik, F. I., & Bialystok, E.
    (2015) Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170–181. 10.1016/j.neuropsychologia.2014.10.042
    https://doi.org/10.1016/j.neuropsychologia.2014.10.042 [Google Scholar]
  41. Grant, A., Dennis, N. A., & Li, P.
    (2014) Cognitive control, cognitive reserve, and memory in the aging bilingual brain. Frontiers in Psychology, 5, 1401. 10.3389/fpsyg.2014.01401
    https://doi.org/10.3389/fpsyg.2014.01401 [Google Scholar]
  42. Green, D. W.
    (1998) Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 67–81. 10.1017/S1366728998000133
    https://doi.org/10.1017/S1366728998000133 [Google Scholar]
  43. Green, D. W., & Abutalebi, J.
    (2013) Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25, 515–530. 10.1080/20445911.2013.796377
    https://doi.org/10.1080/20445911.2013.796377 [Google Scholar]
  44. Gupta, R., Kar, B. R., & Srinivasan, N.
    (2009) Development of task switching and post-error-slowing in children. Behavioral and Brain Functions, 5, 38. 10.1186/1744‑9081‑5‑38
    https://doi.org/10.1186/1744-9081-5-38 [Google Scholar]
  45. Guzmán-Vélez, E., & Tranel, D.
    (2015) Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives. Neuropsychology, 29, 139–150. 10.1037/neu0000105
    https://doi.org/10.1037/neu0000105 [Google Scholar]
  46. Hikosaka, O., & Isoda, M.
    (2010) Switching from automatic to controlled behavior: Cortico-basal ganglia mechanisms. Trends in Cognitive Sciences, 14, 154–161. 10.1016/j.tics.2010.01.006
    https://doi.org/10.1016/j.tics.2010.01.006 [Google Scholar]
  47. Houghton, G., & Grange, J. A.
    (2011) CDF-XL: Computing cumulative distribution functions of reaction time data in Excel. Behavior Research Methods, 43, 1023–1032. 10.3758/s13428‑011‑0119‑3
    https://doi.org/10.3758/s13428-011-0119-3 [Google Scholar]
  48. Hultsch, D. F., Hunter, M. A., MacDonald, S. W., & Strauss, E.
    (2005) Inconsistency in response time as an indicator of cognitive aging. InJ. Duncan, L. Phillips, & P. McLeod (Eds.), Measuring the mind: Speed, control, and age (pp.33–58). Oxford: Oxford University Press. 10.1093/acprof:oso/9780198566427.003.0002
    https://doi.org/10.1093/acprof:oso/9780198566427.003.0002 [Google Scholar]
  49. Irlbacher, K., Kraft, A., Kehrer, S., & Brandt, S. A.
    (2014) Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory. Neuroscience and Biobehavioral Reviews, 46, 58–70. 10.1016/j.neubiorev.2014.06.014
    https://doi.org/10.1016/j.neubiorev.2014.06.014 [Google Scholar]
  50. Jiang, J., Beck, J., Heller, K., & Egner, T.
    (2015) An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nature Communications, 6, 8165. 10.1038/ncomms9165
    https://doi.org/10.1038/ncomms9165 [Google Scholar]
  51. Luk, G., Bialystok, E., Craik, F. I., & Grady, C. L.
    (2011) Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31, 16808–16813. 10.1523/JNEUROSCI.4563‑11.2011
    https://doi.org/10.1523/JNEUROSCI.4563-11.2011 [Google Scholar]
  52. Luk, G., Green, D. W., Abutalebi, J., & Grady, C.
    (2012) Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27, 1479–1488. 10.1080/01690965.2011.613209
    https://doi.org/10.1080/01690965.2011.613209 [Google Scholar]
  53. Marian, V., Blumenfeld, H. K., & Kaushanskaya, M.
    (2007) The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50, 940–967. 10.1044/1092‑4388(2007/067)
    https://doi.org/10.1044/1092-4388(2007/067) [Google Scholar]
  54. Marian, V., & Shook, A.
    (2012) The cognitive benefits of being bilingual. Cerebrum 2012, 13.
    [Google Scholar]
  55. Marklund, P., & Persson, J.
    (2012) Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus. NeuroImage, 63, 1552–1560. 10.1016/j.neuroimage.2012.08.016
    https://doi.org/10.1016/j.neuroimage.2012.08.016 [Google Scholar]
  56. Morales, J., Gómez-Ariza, C. J., & Bajo, M. T.
    (2013) Dual mechanisms of cognitive control in bilinguals and monolinguals. Journal of Cognitive Psychology, 25, 531–546. 10.1080/20445911.2013.807812
    https://doi.org/10.1080/20445911.2013.807812 [Google Scholar]
  57. Morales, J., Yudes, C., Gómez-Ariza, C. J., & Bajo, M. T.
    (2015) Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia, 66, 157–169. 10.1016/j.neuropsychologia.2014.11.014
    https://doi.org/10.1016/j.neuropsychologia.2014.11.014 [Google Scholar]
  58. Paap, K. R., & Greenberg, Z. I.
    (2013) There is no coherent evidence for a bilingual advantage in executive processing. Cognitive psychology, 66(2), 232–258. 10.1016/j.cogpsych.2012.12.002
    https://doi.org/10.1016/j.cogpsych.2012.12.002 [Google Scholar]
  59. Packard, C. J., Westendorp, R. G., Stott, D. J., Caslake, M. J., Murray, H. M., Shepherd, J., … & Cobbe, S. M.
    (2007) Association between apolipoprotein E4 and cognitive decline in elderly adults. Journal of the American Geriatrics Society, 55(11), 1777–1785. 10.1111/j.1532‑5415.2007.01415.x
    https://doi.org/10.1111/j.1532-5415.2007.01415.x [Google Scholar]
  60. Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S.
    (2007) Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18, 1010–1028. 10.1093/cercor/bhm135
    https://doi.org/10.1093/cercor/bhm135 [Google Scholar]
  61. Paxton, J. L., Barch, D. M., Storandt, M., & Braver, T. S.
    (2006) Effects of environmental support and strategy training on older adults’ use of context. Psychology and Aging, 21, 499–509. 10.1037/0882‑7974.21.3.499
    https://doi.org/10.1037/0882-7974.21.3.499 [Google Scholar]
  62. Perani, D., & Abutalebi, J.
    (2015) Bilingualism, dementia, cognitive and neural reserve. Current Opinion in Neurology, 28, 618–625. 10.1097/WCO.0000000000000267
    https://doi.org/10.1097/WCO.0000000000000267 [Google Scholar]
  63. Ratcliff, R.
    (1979) Group reaction time distributions and an analysis of distribution statistics. Psychological bulletin, 86(3), 446–461. 10.1037/0033‑2909.86.3.446
    https://doi.org/10.1037/0033-2909.86.3.446 [Google Scholar]
  64. Rubinov, M., & Sporns, O.
    (2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069. 10.1016/j.neuroimage.2009.10.003
    https://doi.org/10.1016/j.neuroimage.2009.10.003 [Google Scholar]
  65. Simon, J. R., & Rudell, A. P.
    (1967) Auditory SR compatibility: the effect of an irrelevant cue on information processing. Journal of applied psychology, 51(3), 300–304. 10.1037/h0020586
    https://doi.org/10.1037/h0020586 [Google Scholar]
  66. Schlaug, G.
    (2015) Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 37–55. 10.1016/bs.pbr.2014.11.020
    https://doi.org/10.1016/bs.pbr.2014.11.020 [Google Scholar]
  67. Tops, M., & Boksem, M. A.
    (2011) A potential role of the inferior frontal gyrus and anterior insula in cognitive control, brain rhythms, and event-related potentials. Frontiers in Psychology, 2, 330. 10.3389/fpsyg.2011.00330
    https://doi.org/10.3389/fpsyg.2011.00330 [Google Scholar]
  68. Tse, C. S., & Altarriba, J.
    (2012) The effects of first- and second-language proficiency on conflict resolution and goal maintenance in bilinguals: Evidence from reaction time distributional analyses in a Stroop task. Bilingualism: Language and Cognition, 15, 663–676. 10.1017/S1366728912000077
    https://doi.org/10.1017/S1366728912000077 [Google Scholar]
  69. Ullsperger, M., & King, J. A.
    (2010) Proactive and reactive recruitment of cognitive control: Comment on Hikosaka and Isoda. Trends in Cognitive Sciences, 14, 191–192. 10.1016/j.tics.2010.02.006
    https://doi.org/10.1016/j.tics.2010.02.006 [Google Scholar]
  70. Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L.
    (2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438. 10.1016/j.neuroimage.2011.07.044
    https://doi.org/10.1016/j.neuroimage.2011.07.044 [Google Scholar]
  71. Whelan, R.
    (2008) Effective analysis of reaction time data. The Psychological Record, 58, 475–482. 10.1007/BF03395630
    https://doi.org/10.1007/BF03395630 [Google Scholar]
  72. Wu, T., Kansaku, K., & Hallett, M.
    (2004) How self-initiated memorized movements become automatic: A functional MRI study. Journal of Neurophysiology, 91, 1690–1698. 10.1152/jn.01052.2003
    https://doi.org/10.1152/jn.01052.2003 [Google Scholar]
  73. Xia, M., Wang, J., & He, Y.
    (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PloS one, 8(7), e68910. 10.1371/journal.pone.0068910
    https://doi.org/10.1371/journal.pone.0068910 [Google Scholar]
  74. Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E., & Braver, T. S.
    (2009) BOLD correlates of trial-by-trial reaction time variability in gray and white matter: A multi-study fMRI analysis. PLoS One, 4, e4257. 10.1371/journal.pone.0004257
    https://doi.org/10.1371/journal.pone.0004257 [Google Scholar]
  75. Zhang, H., Kang, C., Wu, Y., Ma, F., & Guo, T.
    (2015) Improving proactive control with training on language switching in bilinguals. NeuroReport, 26, 354–359. 10.1097/WNR.0000000000000353
    https://doi.org/10.1097/WNR.0000000000000353 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/lab.18036.das
Loading
/content/journals/10.1075/lab.18036.das
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: dual mechanisms of cognitive control; ageing; bilingualism
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error