1887
image of A tutorial on generalised additive mixed effects models for bilingualism research

Abstract

Abstract

While recent years have seen a shift towards random effects modelling, particularly in areas of linguistics in which nested structure is the norm (e.g., trial repetitions nested within participants), an over-reliance on standard linear modelling prevails, particularly in the cases of dynamic phenomena that may not constitute a linear relationship, e.g., vowel trajectories, pitch contours, acquisition processes, etc. Generalised Additive (Mixed) Models (GAMMs) are now commonly employed in phonetic research (given the naturally dynamic nature of speech data) and this is reflected by the availability of several tutorials which focus on phonetic data. This tutorial aims at making GAMMs accessible to researchers from other fields within linguistics. In particular, this tutorial is written for researchers in bilingualism and multilingualism who wish to be able to start using GAMMs for non-linear data, which is very common in developmental and learning phenomena. While only the basics will be covered here, we hope that researchers will get the necessary foundations to be able to learn GAMMs from existing resources.

Available under the CC BY 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/lab.23076.cor
2024-11-29
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/10.1075/lab.23076.cor/lab.23076.cor.html?itemId=/content/journals/10.1075/lab.23076.cor&mimeType=html&fmt=ahah

References

  1. Aldrich, A. C.
    (2014) Acquisition of L2 phonology: An acoustic analysis of the centralization of L2 Spanish /a/ in adult L1 English-speaking learners. MA Thesis. Brigham Young University.
    [Google Scholar]
  2. Amengual, M., & Simonet, M.
    (2020) Language dominance does not always predict cross-linguistic interactions in bilingual speech production. Linguistic Approaches to Bilingualism, (), –. 10.1075/lab.18042.ame
    https://doi.org/10.1075/lab.18042.ame [Google Scholar]
  3. Bland, J.
    (2016) Speech style, syllable stress, and the second-language acquisition of Spanish /e/ and /o/. MA thesis, Virginia Polytechnic Institute; State University.
    [Google Scholar]
  4. Botezatu, M. R., Misra, M., & Kroll, J. F.
    (2024) Proficiency in a second language influences processing of print–to–sound mappings. Linguistic Approaches to Bilingualism, (), –. 10.1075/lab.21063.bot
    https://doi.org/10.1075/lab.21063.bot [Google Scholar]
  5. Carlucci, L., & Case, J.
    (2013) On the necessity of U-shaped learning. Topics in Cognitive Science, (), –. 10.1111/tops.12002
    https://doi.org/10.1111/tops.12002 [Google Scholar]
  6. Casani, E.
    (2020) Valutare la competenza morfosintattica in italiano L2. Una validazione corpus-based dei livelli del QCER. InE. Nuzzo, E. Santoro, & I. Vedder (Eds.), Valutazione e misurazione delle produzioni orali e scritte in italiano lingua seconda (pp.–). Franco Cesati Editore.
    [Google Scholar]
  7. Cazden, C. B.
    (1968) The acquisition of noun and verb inflections. Child Development, (), –. 10.2307/1126956
    https://doi.org/10.2307/1126956 [Google Scholar]
  8. Cobb, K.
    (2009) La pronunciación de vocales átonas en español: La aplicación de reglas fonológicas por parte de hablantes no-nativos del español. MA Thesis. The University of Arizona.
    [Google Scholar]
  9. Cobb, K., & Simonet, M.
    (2015) Adult second language learning of Spanish vowels. Hispania, (), –. 10.1353/hpn.2015.0026
    https://doi.org/10.1353/hpn.2015.0026 [Google Scholar]
  10. Coretta, S.
    (2023) Tidygam: Tidy prediction and plotting of Generalised Additive Models. \url{https://CRAN.R-project.org/package=tidygam}
    [Google Scholar]
  11. de la Fuente Iglesias, M., & Pérez Castillejo, S.
    (2022) L1 phonetic permeability and phonetic path towards a potential merger: The case of Galician mid vowels in bilingual production. Linguistic Approaches to Bilingualism, (), –. 10.1075/lab.19094.del
    https://doi.org/10.1075/lab.19094.del [Google Scholar]
  12. Ervin, S. M., & Miller, W. R.
    (1963) Language development. InH. W. Stevenson, J. C. Kagan, C. C. Spiker, N. B. Henry, & H. G. Richey (Eds.), Child psychology: The sixty-second yearbook of the National Society for the Study of Education, Part 1 (pp.–). University of Chicago Press.
    [Google Scholar]
  13. Gass, S., & Selinker, L.
    (2008) Second language acquisition. An introductory course. Routledge. 10.4324/9780203932841
    https://doi.org/10.4324/9780203932841 [Google Scholar]
  14. Geeslin, K. L., & Guijarro-Fuentes, P.
    (2006) A longitudinal study of copula choice: Following development in variable structures. InN. Sagarra & A. J. Toribio (Eds.), Selected procedures of the 9th hispanic linguistics symposium (pp.–). Cascadilla Proceedings Project.
    [Google Scholar]
  15. Gigerenzer, G.
    (2004) Mindless statistics. The Journal of Socio-Economics, (), –. 10.1016/j.socec.2004.09.033
    https://doi.org/10.1016/j.socec.2004.09.033 [Google Scholar]
  16. Hastie, T., & Tibshirani, R.
    (1986) Generalized Additive Models. Statistical Science, (), –. 10.1201/9780203753781‑6
    https://doi.org/10.1201/9780203753781-6 [Google Scholar]
  17. Iruela, A.
    (1997) Adquisición del vocalismo español por holandeses: Análisis en estilo semiespontáneo. Estudios de Fonética Experimental, –.
    [Google Scholar]
  18. Kellerman, E.
    (1985) If at first you do succeed...InS. M. Gass & C. G. Madden (Eds.), Input in Second Language Acquisition (pp.–). Newbury.
    [Google Scholar]
  19. Lightbown, P.
    (1983) Exploring relationships between developmental and instructional sequences in L2 acquisition. InH. Seliger & M. Long (Eds.), Classroom oriented research in second language acquisition (pp.–). Newbury House.
    [Google Scholar]
  20. Long, M. H.
    (1990) The least a second language acquisition theory needs to explain. TESOL Quarterly, (), –. 10.2307/3587113
    https://doi.org/10.2307/3587113 [Google Scholar]
  21. Lüdecke, D.
    (2018) Ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, (), . 10.21105/joss.00772
    https://doi.org/10.21105/joss.00772 [Google Scholar]
  22. Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., Xu, F., & Clahsen, H.
    (1992) Overregularization in language acquisition. Monographs of the Society for Research in Child Development, (), –. 10.2307/1166115
    https://doi.org/10.2307/1166115 [Google Scholar]
  23. Martínez Celdrán, E.
    (1984) Fonética. Teide.
    [Google Scholar]
  24. McElreath, R.
    (2019) Statistical rethinking: A Bayesian course with examples in R and Stan. Boca Raton, FL: CRC Press.
    [Google Scholar]
  25. Pearl, J.
    (2010) An introduction to causal inference. The International Journal of Biostatistics, (). 10.2202/1557‑4679.1203
    https://doi.org/10.2202/1557-4679.1203 [Google Scholar]
  26. Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N.
    (2019) Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ, , e6876. 10.7717/peerj.6876
    https://doi.org/10.7717/peerj.6876 [Google Scholar]
  27. Pliatsikas, C., & Marinis, T.
    (2013) Processing empty categories in a second language: When naturalistic exposure fills the (intermediate) gap. Bilingualism: Language and Cognition, (), –. 10.1017/S136672891200017X
    https://doi.org/10.1017/S136672891200017X [Google Scholar]
  28. R Core Team
    R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
    [Google Scholar]
  29. Rumelhart, D. E., & McClelland, J. L.
    (1986) On learning the past tenses of English verbs. Implicit rules or parallel distributed processing?InJ. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press. 10.7551/mitpress/5236.003.0008
    https://doi.org/10.7551/mitpress/5236.003.0008 [Google Scholar]
  30. Shirai, Y.
    (1990) U-shaped behavior in L2 acquisition. Variability in Second Language Acquisition: Proceedings of the Tenth Meeting of the Second Language Research Forum, , –.
    [Google Scholar]
  31. Simpson, G.
    (2023) What do p-values mean in generalized additive model?Cross Validated.
    [Google Scholar]
  32. Sóskuthy, M.
    (2017) Generalised additive mixed models for dynamic analysis in linguistics: A practical introduction. arXiv.org preprint, arXiv:1703.05339.
    [Google Scholar]
  33. (2021) Evaluating generalised additive mixed modelling strategies for dynamic speech analysis. Journal of Phonetics, , . 10.1016/j.wocn.2020.101017
    https://doi.org/10.1016/j.wocn.2020.101017 [Google Scholar]
  34. Tamminga, M., Ahern, C., & Ecay, A.
    (2016) Generalized additive mixed models for intraspeaker variation. Linguistics Vanguard, (), –. 10.1515/lingvan‑2016‑0030
    https://doi.org/10.1515/lingvan-2016-0030 [Google Scholar]
  35. Wieling, M.
    (2018) Analyzing dynamic phonetic data using generalized additive mixed modeling: A tutorial focusing on articulatory differences between L1 and L2 speakers of English. Journal of Phonetics, , –. 10.1016/j.wocn.2018.03.002
    https://doi.org/10.1016/j.wocn.2018.03.002 [Google Scholar]
  36. Williams, S., Guijarro-Fuentes, P., & Vulchanova, M.
    (2022) U-shaped trajectories in an L2 context: Evidence from the acquisition of verb morphology. Vigo International Journal of Applied Linguistics, , –. 10.35869/vial.v0i19.3764
    https://doi.org/10.35869/vial.v0i19.3764 [Google Scholar]
  37. Winter, B.
    (2013) Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499. https://arxiv.org/pdf/1308.5499
    [Google Scholar]
  38. (2020) Statistics for linguists: An introduction using R. Routledge.
    [Google Scholar]
  39. Wood, S.
    (2006) Generalized additive models: An introduction with R. CRC Press. 10.1201/9781420010404
    https://doi.org/10.1201/9781420010404 [Google Scholar]
  40. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), (), –. 10.1111/j.1467‑9868.2010.00749.x
    https://doi.org/10.1111/j.1467-9868.2010.00749.x [Google Scholar]
/content/journals/10.1075/lab.23076.cor
Loading
/content/journals/10.1075/lab.23076.cor
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: GAMMs ; non-linear data ; dynamic analysis ; generalised additive mixed models
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error