1887
Volume 41, Issue 2
  • ISSN 0378-4169
  • E-ISSN: 1569-9927
USD
Buy:$35.00 + Taxes

Abstract

Abstract

This paper extends the computationally-oriented theory of ellipsis presented in McShane’s (2005) by introducing the feature . It is argued that, in Russian, the presence of a typical sequence of events in a pair of clauses can be the key feature licensing the ellipsis of the latter’s direct object. The linguistic analysis contributes to a larger cognitive modeling effort aimed at configuring language-endowed intelligent agents with human-level language understanding capabilities.

Loading

Article metrics loading...

/content/journals/10.1075/li.00019.mcs
2019-02-04
2019-12-16
Loading full text...

Full text loading...

References

  1. Beale, S., Nirenburg, S., & Mahesh, K.
    1995 Semantic analysis in the Mikrokosmos machine translation project. Proceedings of the Symposium on NLP, Kaset Sart University, Bangkok, Thailand.
    [Google Scholar]
  2. Church, K.
    2011 A pendulum swung too far. Linguistic Issues in Language Technology, 6(5): 1–27.
    [Google Scholar]
  3. Crystal, D.
    2003English as a Global Language. Cambridge University Press. 10.1017/CBO9780511486999
    https://doi.org/10.1017/CBO9780511486999 [Google Scholar]
  4. Davies, M.
    2008The Corpus of Contemporary American English: 520 million words, 1990-present. Available online atcorpus.byu.edu/coca/
    [Google Scholar]
  5. Du Bois, J. W., Chafe, W. L., Meyer, C., Thompson, S. A., Englebretson, R., & Martey, N.
    2005Santa Barbara Corpus of Spoken American English, Parts 1–4. Philadelphia: Linguistic Data Consortium.
    [Google Scholar]
  6. Erteschik-Shir, N., Ibnbari, L., & Taube, S.
    2013 Missing objects as topic drop. Lingua, 136, 145–169. 10.1016/j.lingua.2013.07.009
    https://doi.org/10.1016/j.lingua.2013.07.009 [Google Scholar]
  7. Hajič, J., Hajičová, E., Mikulová, M., Mírovský, J., Panevová, J., & Zeman, D.
    2015 Deletions and node reconstructions in a dependency-based multilevel annotation scheme. InA. Gelbukh (Ed.), Proceedings of the 16th International Conference on Computational Linguistics and Intelligent Text Processing. Berlin/Heidelberg: Springer. 10.1007/978‑3‑319‑18111‑0_2
    https://doi.org/10.1007/978-3-319-18111-0_2 [Google Scholar]
  8. Jackendoff, R.
    2007 A whole lot of challenges for linguists. Journal of English Linguistics, 35(3), 253–262. 10.1177/0075424207305598
    https://doi.org/10.1177/0075424207305598 [Google Scholar]
  9. Langley, P., Laird, J. E., & Rogers, S.
    2009 Cognitive architectures: Research issues and challenges. Cognitive Systems Research, 10, 141–160. 10.1016/j.cogsys.2006.07.004
    https://doi.org/10.1016/j.cogsys.2006.07.004 [Google Scholar]
  10. McShane, M.
    2000 Hierarchies of parallelism in elliptical Polish structures. Journal of Slavic Linguistics, 8, 83–117.
    [Google Scholar]
  11. 2005A Theory of Ellipsis. Oxford University Press.
    [Google Scholar]
  12. 2014 Parameterizing mental model ascription across intelligent agents. Interaction Studies, 15(3), 404–425.
    [Google Scholar]
  13. 2017 Natural language understanding (NLU, not NLP) in cognitive systems. AI Magazine, 34(4), 43–56. 10.1609/aimag.v38i4.2745
    https://doi.org/10.1609/aimag.v38i4.2745 [Google Scholar]
  14. McShane, M., & Babkin, P.
    2016a Detection and resolution of verb phrase ellipsis. Linguistic Issues in Language Technology, 13(1), 1–34.
    [Google Scholar]
  15. 2016b Resolving difficult referring expressions. Advances in Cognitive Systems, 4, 247–263.
    [Google Scholar]
  16. McShane, M., Beale, S., & Babkin, P.
    2014 Nominal compound interpretation by intelligent agents. Linguistic Issues in Language Technology, 10(1): 1–34.
    [Google Scholar]
  17. McShane, M., Blissett, K., & Nirenburg, I.
    2017 Treating unexpected input in incremental semantic analysis. Proceedings of the Fifth Annual Conference on Advances in Cognitive Systems.
    [Google Scholar]
  18. McShane, M., Jarrell, B., Fantry, G., Nirenburg, S., Beale, S., & Johnson, B.
    2008 Revealing the conceptual substrate of biomedical cognitive models to the wider community. InJ. D. Westwood (Eds.), Medicine Meets Virtual Reality 16: Parallel, combinatorial, convergent: NextMed by Design, 281–286. Amsterdam; Berlin; Oxford; Tokyo; Washington, DC: IOS Press.
  19. McShane, M., & Nirenburg, S.
    2012 A knowledge representation language for natural language processing, simulation and reasoning. International Journal of Semantic Computing, 6(1), 3–23. 10.1142/S1793351X12400016
    https://doi.org/10.1142/S1793351X12400016 [Google Scholar]
  20. 2016 Decisions for semantic analysis in cognitive systems. Proceedings of The Fourth Annual Conference on Advances in Cognitive Systems.
    [Google Scholar]
  21. McShane, M., Nirenburg, S., & Beale, S.
    2005a An NLP lexicon as a largely language independent resource. Machine Translation, 19(2), 139–173. 10.1007/s10590‑006‑9001‑y
    https://doi.org/10.1007/s10590-006-9001-y [Google Scholar]
  22. 2005b Semantics-based resolution of fragments and underspecified structures. Traitement Automatique des Langues, 46(1), 163–184.
    [Google Scholar]
  23. 2016 Language Understanding with Ontological Semantics. Advances in Cognitive Systems, 4, 35–55.
    [Google Scholar]
  24. McShane, M., Nirenburg, S., Beale, S., Jarrell, B., & Fantry, G.
    2007 Knowledge-based modeling and simulation of diseases with highly differentiated clinical manifestations. InR. Bellazzi (Eds.), Artificial Intelligence in Medicine: Proceedings of the 11th Conference on Artificial Intelligence in Medicine (AIME 2007), 34–43. Berlin, Heidelberg: Springer-Verlag. 10.1007/978‑3‑540‑73599‑1_4
    https://doi.org/10.1007/978-3-540-73599-1_4 [Google Scholar]
  25. Nirenburg, S., & McShane, M.
    2015 The interplay of language processing, reasoning and decision-making in cognitive computing. InC. Biemann (Eds.), Natural Language Processing and Information Systems, Proceedings of the 20th International Conference on Applications of Natural Language to Information Systems (NLDB 2015), 167–179. Berlin, Heidelberg: Springer-Verlag. 10.1007/978‑3‑319‑19581‑0_15
    https://doi.org/10.1007/978-3-319-19581-0_15 [Google Scholar]
  26. 2016a Natural language processing. InS. E. F. Chipman (Ed.), The Oxford Handbook of Cognitive Science, Volume1.
    [Google Scholar]
  27. 2016b Slashing metaphor with Occam’s razor. Proceedings of The Fourth Annual Conference on Advances in Cognitive Systems.
    [Google Scholar]
  28. Nirenburg, S., McShane, M., & Beale, S.
    2008 A simulated physiological/cognitive “double agent”. InJ. Beal (Eds.), Papers from the AAAI Fall Symposium “Naturally Inspired Cognitive Architectures”. AAAI Technical Report FS-08-06. Menlo Park, CA: AAAI Press.
    [Google Scholar]
  29. Nirenburg, S., & Raskin, V.
    2004Ontological Semantics. Cambridge, Mass.: The MIT Press.
    [Google Scholar]
  30. Nirenburg, S., & Wood, P.
    2017 Toward human-style learning in robots. AAAI Fall Symposium “Natural Communication for Human-Robot Collaboration”.
    [Google Scholar]
  31. Poesio, M., Cheng, H., Henschel, R., Hitzeman, J., Kibble, R. & Stevenson, R.
    2000 Specifying the parameters of Centering Theory: a corpus-based evaluation using text from application-oriented domains. Proceedings of the 38th ACL, Hong Kong, October. 10.3115/1075218.1075269
    https://doi.org/10.3115/1075218.1075269 [Google Scholar]
  32. Russian National Corpus [RNC]
    Russian National Corpus [RNC]. Institute of Russian Language, Russian Academy of Sciences. Available at: ruscorpora.ru
  33. Schank, R. C., & Abelson, R. P.
    1977Scripts, Plans, Goals, and Understanding: An Inquiry Into Human Knowledge Structures (Artificial Intelligence Series). Lawrence Erlbaum Associates.
    [Google Scholar]
  34. Turney, P. D., & Pantel, P.
    2010 From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141–188. 10.1613/jair.2934
    https://doi.org/10.1613/jair.2934 [Google Scholar]
  35. Zaenen, A.
    2006 Mark-up barking up the wrong tree. Computational Linguistics, 32(4), 577–580. 10.1162/coli.2006.32.4.577
    https://doi.org/10.1162/coli.2006.32.4.577 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/li.00019.mcs
Loading
/content/journals/10.1075/li.00019.mcs
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): cognitive modeling , direct object ellipsis , ellipsis , natural language understanding and Russian
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error