1887
Volume 47, Issue 1
  • ISSN 0378-4169
  • E-ISSN: 1569-9927
USD
Buy:$35.00 + Taxes

Abstract

Summary

This study examines the syntactic features of French medical and general texts to clarify their complexity and implications for comprehension. By analysing corpora from both domains, we found significant differences in the use of passive voice, present participles, negation and gerund constructions. In medical texts, the passive voice and present participles are more frequent, reflecting specialized discourse and precision. In contrast, negation and gerunds are more common in general texts, emphasizing the diversity of syntactic structures, and specific stylistic and argumentative effects. Our findings underline the need for clear communication in medical texts and provide empirical evidence for the simplification.

Loading

Article metrics loading...

/content/journals/10.1075/li.00105.ivc
2024-10-31
2025-04-18
Loading full text...

Full text loading...

References

  1. Abdaoui, A., Tchechmedjiev, A., Digan, W., Bringay, S. & Jonquet, C.
    (2017) French ConText: Détecter la négation, la temporalité et le sujet dans les textes cliniques français. InSIIM 2017 — 4ème Symposium sur l’Ingénierie de l’Information Médicale, Toulouse, France.
    [Google Scholar]
  2. Ahlfeldt, H., Borin, L., Daumke, P., Grabar, N., Hallett, C., Hardcastle, D., Kokkinakis, D., Mancini, C., Marko, K., Merkel, M., Pietsch, C., Power, R., Scott, D., Silvervarg, A., Gronostaj, M. T., Williams, S. & Willis, A.
    (2006) Literature Review on Patient-Friendly Documentation Systems. Rapport interne, NoE Semantic Mining. WP 27, Del. 1.
    [Google Scholar]
  3. Arnavielle, T.
    (2010) Centre and periphery in conjugation. the case of the french gerund. Echo des etudes romanes, 6(1), 129–142. 10.32725/eer.2010.013
    https://doi.org/10.32725/eer.2010.013 [Google Scholar]
  4. Audiau, A.
    (2009) L’information pour tous. Règles européennes pour une information facile à lire et à comprendre. Rapport interne, Nous aussi, UNAPEI.
    [Google Scholar]
  5. Baker, L. & Gollop, C.
    (2004) Medical textbooks: Can lay people read and understand them?Library trends, 531, 336–347.
    [Google Scholar]
  6. Biber, D.
    (1988) Variation across Speech and Writing. Cambridge: Cambridge University Press. 10.1017/CBO9780511621024
    https://doi.org/10.1017/CBO9780511621024 [Google Scholar]
  7. Binnick, R. I.
    (2012) The Oxford Handbook of Tense and Aspect. Oxford University Press. 10.1093/oxfordhb/9780195381979.001.0001
    https://doi.org/10.1093/oxfordhb/9780195381979.001.0001 [Google Scholar]
  8. Brouwers, L., Bernhard, D., Ligozat, A.-L. & François, T.
    (2014) Syntactic sentence simplification for French. InPITR workshop, 47–56. 10.3115/v1/W14‑1206
    https://doi.org/10.3115/v1/W14-1206 [Google Scholar]
  9. Brunato, D., Dell’Orletta, F., Venturi, G. & Montemagni, S.
    (2014) Defining an annotation scheme with a view to automatic text simplification. InCLICIT, 87–92.
    [Google Scholar]
  10. Canut, E. & Husianycia, M.
    (2023) Référentiel pour l’analyse linguistique de textes et la rédaction intelligible de types d’ecrits (Guide ALT&RITE). Rapport interne, AsFoRel.
    [Google Scholar]
  11. Cartoni, B. & Deléger, L.
    (2011) Découverte de patrons paraphrastiques en corpus comparable: une approche basée sur les n-grammes. InTraitement Automatique des Langues Naturelles (TALN), 1–6.
    [Google Scholar]
  12. Dalloux, C., Claveau, V., Grabar, N. & Moro, C.
    (2018) Portée de la négation : détection par apprentissage supervisé en français et portugais brésilien. InTALN 2018, 1–6.
    [Google Scholar]
  13. Dalloux, C., Claveau, V., Grabar, N., Oliveira, L., Moro, C., Gumiel, Y. & Carvalho, D.
    (2020) Supervised learning for the detection of negation and of its scope in French and Brazilian Portuguese biomedical corpora. Natural Language Engineering journal, 27(2), 181–201. 10.1017/S1351324920000352
    https://doi.org/10.1017/S1351324920000352 [Google Scholar]
  14. Deléger, L. & Zweigenbaum, P.
    (2008) Paraphrase acquisition from comparable medical corpora of specialized and lay texts. InAnn Symp Am Med Inform Assoc (AMIA), 146–50.
    [Google Scholar]
  15. Duchowski, A.
    (2007) Eye Tracking Methodology. Theory and practice. London, UK: Springer.
    [Google Scholar]
  16. Gala, N., François, T., Javourey-Drevet, L. & Ziegler, J. C.
    (2018) La simplification de textes, une aide à l’apprentissage de la lecture. Langue française, 199(3), 123–131. 10.3917/lf.199.0123
    https://doi.org/10.3917/lf.199.0123 [Google Scholar]
  17. Grabar, N. & Cardon, R.
    (2018) Clear — simple corpus for medical French. InWorkshop on Automatic Text Adaption (ATA), 1–11. 10.18653/v1/W18‑7002
    https://doi.org/10.18653/v1/W18-7002 [Google Scholar]
  18. Grabar, N., Dalloux, C. & Claveau, V.
    (2020) CAS: corpus of clinical cases in French. Journal of BioMedical Semantics, 11(1), 1–7. 10.1186/s13326‑020‑00225‑x
    https://doi.org/10.1186/s13326-020-00225-x [Google Scholar]
  19. Honnibal, M., Montani, I., Van Landeghem, S. & Boyd, A.
    (2020) spaCy: Industrial-strength natural language processing in python. 10.5281/zenodo.1212303
    https://doi.org/10.5281/zenodo.1212303 [Google Scholar]
  20. Ibrahim, H. & Idrus, H.
    (2021) Investigating the syntactic structures of patient information leaflets. SHS Web of Conferences, 1241, 01004. 10.1051/shsconf/202112401004
    https://doi.org/10.1051/shsconf/202112401004 [Google Scholar]
  21. Javourey-Drevet, L., Dufau, S., François, T., Gala, N., Ginestié, J. & Ziegler, J. C.
    (2022) Simplification of literary and scientific texts to improve reading fluency and comprehension in beginning readers of French. Applied Psycholinguistics, 431, 485–512. 10.1017/S014271642100062X
    https://doi.org/10.1017/S014271642100062X [Google Scholar]
  22. Kauchak, D. & Leroy, G.
    (2016) Moving beyond readability metrics for health-related text simplification. IT Professional, 18(3), 45–51. 10.1109/MITP.2016.50
    https://doi.org/10.1109/MITP.2016.50 [Google Scholar]
  23. Leroy, G., Kauchak, D. & Coster, W.
    (2012) A Systematic grammatical analysis of easy and difficult medical text. American Medical Informatics Association (AMIA) Fall Symposium.
    [Google Scholar]
  24. L’Homme, M.-C.
    (2002) What can verbs and adjectives tell us about terms ?Terminology and Knowledge Engineering, Nancy, France. 10.13140/2.1.4075.3927
    https://doi.org/10.13140/2.1.4075.3927 [Google Scholar]
  25. McCray, A.
    (2005) Promoting health literacy. J of Am Med Infor Ass, 121, 152–163. 10.1197/jamia.M1687
    https://doi.org/10.1197/jamia.M1687 [Google Scholar]
  26. Meisner, C., Robert-Tissot, A. & Stark, E.
    (2015) L’absence et la présence du ne de négation. InEncyclopédie Grammaticale du Français, en ligne : encyclogram.fr. 10.34847/nkl.dc54rol2
    https://doi.org/10.34847/nkl.dc54rol2 [Google Scholar]
  27. Millar, N. & Budgell, B. S.
    (2019) The passive voice and comprehensibility of biomedical texts: An experimental study with 2 cohorts of chiropractic students. Journal of Chiropractic Education, 33(1), 16–20. Epub2018 Aug 2. 10.7899/JCE‑17‑22
    https://doi.org/10.7899/JCE-17-22 [Google Scholar]
  28. OCDE
    OCDE (2015) Guide de style de l’OCDE Troisième édition: Troisième édition. OECD Publishing.
    [Google Scholar]
  29. Pearson, K.
    (1900) On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50(302), 157–17. 10.1080/14786440009463897
    https://doi.org/10.1080/14786440009463897 [Google Scholar]
  30. Rihs, A.
    (2009) Gérondif, participe présent et expression de la cause. Nouveaux cahiers de linguistique française, 291, 197–214.
    [Google Scholar]
  31. Ruel, J., Kassi, B., Moreau, A. & Mbida-Mballa, S.
    (2011) Guide de rédaction pour une information accessible. Gatineau: Pavillon du Parc.
    [Google Scholar]
  32. Sackett, D., Rosenberg, W., Gray, J., Haynes, R. & Richardson, W.
    (1996) Evidence based medicine: what it is and what it isn’t. BMJ, 312(7023), 71–2. 10.1136/bmj.312.7023.71
    https://doi.org/10.1136/bmj.312.7023.71 [Google Scholar]
  33. Saggion, H.
    (2017) Automatic Text Simplification, volume321ofSynthesis Lectures on Human Language Technologies. University of Toronto: Morgan & Claypool. 10.1007/978‑3‑031‑02166‑4
    https://doi.org/10.1007/978-3-031-02166-4 [Google Scholar]
  34. Seretan, V.
    (2012) Acquisition of syntactic simplification rules for French. InN. Calzolari (Eds.), Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), 4019–4026, Istanbul, Turkey.
    [Google Scholar]
  35. Street, R. L. J., Makoul, G., Arora, N. K. & Epstein, R. M.
    (2009) How does communication heal? pathways linking clinician-patient communication to health outcomes. Patient Education and Counseling, 74(3), 295–301. Epub2009 Jan 15. 10.1016/j.pec.2008.11.015
    https://doi.org/10.1016/j.pec.2008.11.015 [Google Scholar]
  36. Tchami, O. W.
    (2014) The descriptive approaches of the verb in linguistics, terminology and nlp (les modèles de description du verbe dans les travaux de linguistique, terminologie et tal) [in french]. InJEP/TALN/RECITAL.
    [Google Scholar]
  37. van der Auwera, J. & Krasnoukhova, O.
    (2020) The typology of negation. InV. Déprez & M. T. Espinal (Eds), The Oxford Handbook of Negation, 91–116. Oxford: OUP.
    [Google Scholar]
  38. Vincze, V., Szarvas, G., Farkas, R., Móra, G. & Csirik, J.
    (2008) The bioscope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics, 91. 10.1186/1471‑2105‑9‑S11‑S9
    https://doi.org/10.1186/1471-2105-9-S11-S9 [Google Scholar]
/content/journals/10.1075/li.00105.ivc
Loading
/content/journals/10.1075/li.00105.ivc
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error