1887
Volume 12, Issue 1
  • ISSN 1879-7865
  • E-ISSN: 1879-7873
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The present article reviews a series of selected functional and structural magnetic resonance imaging (MRI) studies focusing on the neuroplasticity of second language vocabulary acquisition as a function of linguistic experience. A clear-cut picture emerging from the review is that brain changes induced by second language vocabulary acquisition are observed at both functional and structural levels. Importantly, second language experience is even able to shape brain structures in short-term training of a few weeks. The evidence that linguistic experience can sculpt the brain in late second language learners, and even solely after a short-term laboratory training, constitutes a strong argument against theoretical approaches postulating that environmental factors are relatively unimportant for language development. Rather, combined neuroimaging data lend support to the determining role of linguistic experience in linguistic knowledge emergence during second language acquisition, at least at the lexical level.

Loading

Article metrics loading...

/content/journals/10.1075/lia.20023.ise
2021-07-27
2021-09-24
Loading full text...

Full text loading...

References

  1. Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., … Costa, A.
    (2012) Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 2076–2086. 10.1093/cercor/bhr287
    https://doi.org/10.1093/cercor/bhr287 [Google Scholar]
  2. Abutalebi, J., & Green, D. W.
    (2008) Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and Cognitive Processes, 23, 557–582. 10.1080/01690960801920602
    https://doi.org/10.1080/01690960801920602 [Google Scholar]
  3. Assaf, Y., & Pasternak, O.
    (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. Journal of Molecular Neuroscience, 34(1), 51–61. 10.1007/s12031‑007‑0029‑0
    https://doi.org/10.1007/s12031-007-0029-0 [Google Scholar]
  4. Baddeley, A.
    (2003) Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. 10.1038/nrn1201
    https://doi.org/10.1038/nrn1201 [Google Scholar]
  5. Barsalou, L. W.
    (2008) Grounded cognition. Annual Review of Psychology, 59, 617–45. 10.1146/annurev.psych.59.103006.093639
    https://doi.org/10.1146/annurev.psych.59.103006.093639 [Google Scholar]
  6. Bedoin, N., Abadie, R., Krzonowski, J., Ferragne, E., & Marcastel, A.
    (2019) A combined forced-attention dichotic listening – go/nogo task to assess response inhibition and interference suppression: An auditory event-related potential investigation. Neuropsychology, 33(8), 1136–1150. 10.1037/neu0000586
    https://doi.org/10.1037/neu0000586 [Google Scholar]
  7. Binder, J. R., & Desai, R. H.
    (2011) The neurobiology of semantic memory. Trends in Cognitive Science, 15(11), 527–536. 10.1016/j.tics.2011.10.001
    https://doi.org/10.1016/j.tics.2011.10.001 [Google Scholar]
  8. Birdsong, D.
    (2018) Plasticity, variability and age in second language acquisition and bilingualism. Frontiers in Psychology, 9:81. doi:  10.3389/fpsyg.2018.00081
    https://doi.org/10.3389/fpsyg.2018.00081 [Google Scholar]
  9. Blanco-Elorrieta, E., Emmorey, K., & Pylkkänen, L.
    (2018) Language switching decomposed through MEG and evidence from bimodal bilinguals. Proceedings of the National Academy of Sciences of the United States of America, 115(39), 9708–9713. 10.1073/pnas.1809779115
    https://doi.org/10.1073/pnas.1809779115 [Google Scholar]
  10. Breitenstein, C., Jansen, A., Deppe, M., Foerster, A.-F., Sommer, J., Wolbers, T.,
    (2005) Hippocampus activity differentiates good from poor learners of a novel lexicon. NeuroImage, 25(3), 958–968. 10.1016/j.neuroimage.2004.12.019
    https://doi.org/10.1016/j.neuroimage.2004.12.019 [Google Scholar]
  11. Brodmann, K.
    (1909) Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Die Cortexgliederung des Menschen. Journal of Psychology and Neurology, 10, 231–246.
    [Google Scholar]
  12. Chung, M. K., Dalton, K. M., Shen, L., Evans, A. C., & Davidson, R. J.
    (2006) Unified cortical surface morphometry and its application to quantifying amount of gray matter. Technical report No. 1122. Department of Statistics, U. of Wisconsin-Madison.
    [Google Scholar]
  13. Costa, A., & Sebastián-Gallés, N.
    (2014) How does the bilingual experience sculpt the brain?Nature Reviews Neuroscience, 15(5), 336–345. 10.1038/nrn3709
    https://doi.org/10.1038/nrn3709 [Google Scholar]
  14. Cummine, J., & Boliek, C. A.
    (2013) Understanding white matter integrity stability for bilinguals on language status and reading performance. Brain Structure & Function, 218(2), 595–601. 10.1007/s00429‑012‑0466‑6
    https://doi.org/10.1007/s00429-012-0466-6 [Google Scholar]
  15. Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R.,
    (2013) A neural interactive location for multilingual talent. Cortex, 49(2), 605–608. 10.1016/j.cortex.2012.12.001
    https://doi.org/10.1016/j.cortex.2012.12.001 [Google Scholar]
  16. Dewaele, J.-M.
    (2009) Individual differences in second language acquisition. InW. C. Ritchie & T. K. Bhatia (Eds.), The new handbook of second language acquisition (pp.623–646). Bingley: Emerald Group Publishing Limited.
    [Google Scholar]
  17. Elmer, S., Hänggi, J., & Jäncke, L.
    (2014) Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex, 54, 179–189. 10.1016/j.cortex.2014.02.014
    https://doi.org/10.1016/j.cortex.2014.02.014 [Google Scholar]
  18. Fiebach, C. J., Friederici, A. D., Müller, K., & von Cramon, D. Y.
    (2002) fMRI evidence for dual routes to the mental lexicon in visual word recognition. Journal of Cognitive Neuroscience, 14, 11–23. 10.1162/089892902317205285
    https://doi.org/10.1162/089892902317205285 [Google Scholar]
  19. Fiebach, C. J., Ricker, B., Friederici, A. D., & Jacobs, A. M.
    (2007) Inhibition and facilitation in visual word recognition: Prefrontal contribution to the orthographic neighborhood size effect. NeuroImage, 36, 901–911. 10.1016/j.neuroimage.2007.04.004
    https://doi.org/10.1016/j.neuroimage.2007.04.004 [Google Scholar]
  20. Filler, A.
    (2009) MR neurography and diffusion tensor imaging: Origins, history & clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5,000 patient study group. Neurosurgery, A29–A43. 10.1227/01.NEU.0000351279.78110.00
    https://doi.org/10.1227/01.NEU.0000351279.78110.00 [Google Scholar]
  21. Fischl, B., & Dale, A. M.
    (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055. 10.1073/pnas.200033797
    https://doi.org/10.1073/pnas.200033797 [Google Scholar]
  22. Friederici, A. D.
    (2011) The brain basis of language processing: From structure to function. Physiological Reviews, 91, 1357–1392. 10.1152/physrev.00006.2011
    https://doi.org/10.1152/physrev.00006.2011 [Google Scholar]
  23. Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J.
    (1993) Functional connectivity: The principal component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5–14. 10.1038/jcbfm.1993.4
    https://doi.org/10.1038/jcbfm.1993.4 [Google Scholar]
  24. Garcia-Penton, L., Perez, F. A., Iturria-Medina, Y., Gillon-Dowens, M., & Carreiras, M.
    (2014) Anatomical connectivity changes in the bilingual brain. NeuroImage, 84, 495–504. 10.1016/j.neuroimage.2013.08.064
    https://doi.org/10.1016/j.neuroimage.2013.08.064 [Google Scholar]
  25. Gates, K. M., Molenaar, P., Hillary, F. G., Ram, N., & Rovine, M. J.
    (2010) Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage, 50, 1118–1125. 10.1016/j.neuroimage.2009.12.117
    https://doi.org/10.1016/j.neuroimage.2009.12.117 [Google Scholar]
  26. Godel, R.
    (1957) Les sources manuscrites du Cours de linguistique générale de F. de Saussure, Genève: Droz.
    [Google Scholar]
  27. Gold, B. T., Johnson, N. F., & Powell, D. K.
    (2013) Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia, 51(13), 2841–2846. 10.1016/j.neuropsychologia.2013.09.037
    https://doi.org/10.1016/j.neuropsychologia.2013.09.037 [Google Scholar]
  28. Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C.
    (2007) Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17(3), 575–582. 10.1093/cercor/bhk001
    https://doi.org/10.1093/cercor/bhk001 [Google Scholar]
  29. Grant, A., Fang, S. Y., & Li, P.
    (2015) Second language lexical development and cognitive control: A longitudinal fMRI study. Brain and Language, 144, 35–47. 10.1016/j.bandl.2015.03.010
    https://doi.org/10.1016/j.bandl.2015.03.010 [Google Scholar]
  30. Green, D. W.
    (2003) Neural basis of lexicon and grammar in L2 acquisition: The convergence hypothesis. InR. van Hout, A. Hulk, F. Kuiken, & R. Towell (Eds.). The interface between syntax and the lexicon in second language acquisition (pp.197–208). Amsterdam: John Benjamins. 10.1075/lald.30.10gre
    https://doi.org/10.1075/lald.30.10gre [Google Scholar]
  31. Green, D. W., & Abutalebi, J.
    (2013) Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25, 515–530. 10.1080/20445911.2013.796377
    https://doi.org/10.1080/20445911.2013.796377 [Google Scholar]
  32. Green, D. W., Crinion, J., & Price, C. J.
    (2006) Convergence, degeneracy and control. Language Learning, 56(S1), 99–125. 10.1111/j.1467‑9922.2006.00357.x
    https://doi.org/10.1111/j.1467-9922.2006.00357.x [Google Scholar]
  33. Grogan, A., Jones, O. P., Ali, N., Crinion, J., Orabona, S., Mechias, M. L.,
    (2012) Structural correlates for lexical efficiency and number of languages in non-native speakers of English. Neuropsychologia, 50(7), 1347–1352. 10.1016/j.neuropsychologia.2012.02.019
    https://doi.org/10.1016/j.neuropsychologia.2012.02.019 [Google Scholar]
  34. Heidlmayr, K., Hemforth, B., Moutier, S., & Isel, F.
    (2015) Neurodynamics of executive control processes in bilinguals: Evidence from ERP and source reconstruction analyses. Frontiers in Psychology, 6:821. 10.3389/fpsyg.2015.00821
    https://doi.org/10.3389/fpsyg.2015.00821 [Google Scholar]
  35. Hernandez, A. E.
    (2013) The bilingual brain. Oxford, UK: Oxford University Press. 10.1093/acprof:oso/9780199828111.001.0001
    https://doi.org/10.1093/acprof:oso/9780199828111.001.0001 [Google Scholar]
  36. Hernandez, A. E., Dapretto, M., Mazziotta, J., & Bookheimer, S.
    (2001) Language switching and language representation in Spanish-English bilinguals: An fMRI study. Neuroimage, 14, 510–520. 10.1006/nimg.2001.0810
    https://doi.org/10.1006/nimg.2001.0810 [Google Scholar]
  37. Hernandez, A. E., & Li, P.
    (2007) Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133(4), 638–650. 10.1037/0033‑2909.133.4.638
    https://doi.org/10.1037/0033-2909.133.4.638 [Google Scholar]
  38. Hernandez, A. E., Woods, E. A., & Bradley, K. A. L.
    (2015) Neural correlates of single word reading in bilingual children and adults. Brain and Language, 143, 11–19. 10.1016/j.bandl.2015.01.010
    https://doi.org/10.1016/j.bandl.2015.01.010 [Google Scholar]
  39. Hickok, G.
    (2009) The functional neuroanatomy of language. Physics of Life Reviews, 6(3), 121–143. 10.1016/j.plrev.2009.06.001
    https://doi.org/10.1016/j.plrev.2009.06.001 [Google Scholar]
  40. Hickok, G., & Poeppel, D.
    (2007) The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402. 10.1038/nrn2113
    https://doi.org/10.1038/nrn2113 [Google Scholar]
  41. Hosoda, C., Tanaka, K., Nariai, T., Honda, M., & Hanakawa, T.
    (2013) Dynamic neural network reorganization associated with second language vocabulary acquisition: A multimodal imaging study. Journal of Neuroscience, 33(34), 13663–13672. 10.1523/JNEUROSCI.0410‑13.2013
    https://doi.org/10.1523/JNEUROSCI.0410-13.2013 [Google Scholar]
  42. Isel, F., Baumgaertner, A., Thrän, J., Meisel, J. M., & Büchel, C.
    (2010) Neural circuitry of the bilingual mental lexicon: Effect of age of second language acquisition. Brain and Cognition, 72, 169–180. 10.1016/j.bandc.2009.07.008
    https://doi.org/10.1016/j.bandc.2009.07.008 [Google Scholar]
  43. Isel, F., Gunter, T. C., & Friederici, A. D.
    (2003) Prosody-assisted head-driven access to spoken German compounds. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 277–288.
    [Google Scholar]
  44. Isel, F., & Shen, W.
    (2020) Perception of lexical neutral tones in Mandarin compounds: Electroencephalographic evidence from an oddball paradigm. Neuropsychologia, 147, 107557. 10.1016/j.neuropsychologia.2020.107557
    https://doi.org/10.1016/j.neuropsychologia.2020.107557 [Google Scholar]
  45. Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T.
    (2007) Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28, 85–93. 10.1002/hbm.20259
    https://doi.org/10.1002/hbm.20259 [Google Scholar]
  46. Klein, D., Mok, K., Chen, J.-K., & Watkins, K. E.
    (2013) Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain and Language, 131, 20–24. 10.1016/j.bandl.2013.05.014
    https://doi.org/10.1016/j.bandl.2013.05.014 [Google Scholar]
  47. Kroll, J. F., & Stewart, E.
    (1994) Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33, 149–174. 10.1006/jmla.1994.1008
    https://doi.org/10.1006/jmla.1994.1008 [Google Scholar]
  48. Kwok, V., Niu, Z., Kay, P., Zhou, K., Mo, L., Jin, Z.,
    (2011) Learning new color names produces rapid increase in gray matter in the intact adult human cortex. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 108(16), 6686–6688. 10.1073/pnas.1103217108
    https://doi.org/10.1073/pnas.1103217108 [Google Scholar]
  49. Lee, H., Devlin, J. T., Shakeshaft, C., Stewart, L. H., Brennan, A., & Glensman, J.
    (2007) Anatomical traces of vocabulary acquisition in the adolescent brain. Journal of Neuroscience, 27(5), 1184–1189. 10.1523/JNEUROSCI.4442‑06.2007
    https://doi.org/10.1523/JNEUROSCI.4442-06.2007 [Google Scholar]
  50. Legault, J., Fang, S-Y, Lan, Y.-J, & Li, P.
    (2019a) Structural brain changes as a function of second language vocabulary training: Effects of learning context. Brain and Cognition, 134, 90–102. 10.1016/j.bandc.2018.09.004
    https://doi.org/10.1016/j.bandc.2018.09.004 [Google Scholar]
  51. Legault, J., Zhao, J., Chi, Y-A., Chen, W., Klippel, A., & Li, P.
    (2019b) Immersive virtual reality as an effective tool for second language vocabulary learning. Languages, 4(13), 1–132. 10.3390/languages4010013
    https://doi.org/10.3390/languages4010013 [Google Scholar]
  52. Lenneberg, E. H.
    (1967) Biological foundations of language. Wiley. 10.1080/21548331.1967.11707799
    https://doi.org/10.1080/21548331.1967.11707799 [Google Scholar]
  53. Li, P., Legault, J., Klippel, A., & Zhao, J.
    (2020) Virtual reality for student learning: Understanding individual differences. Human Behaviour and Brain, 1(1), 28–36. 10.37716/HBAB.2020010105
    https://doi.org/10.37716/HBAB.2020010105 [Google Scholar]
  54. Li, P., Legault, J., & Litcofsky, K. A.
    (2014) Neuroplasticity as a function of second language learning: anatomical changes in the human brain. Cortex, 58, 301–324. 10.1016/j.cortex.2014.05.001
    https://doi.org/10.1016/j.cortex.2014.05.001 [Google Scholar]
  55. Luo, D., Kwok, V. P. Y., Liu, Q., Li, W., Yang, Y., Zhou, K., Xu, M., Gao, J.-H., & Tan, L. H.
    (2019) Microstructural plasticity in the bilingual brain. Brain and Language, 196, 1–9. 10.1016/j.bandl.2019.104654
    https://doi.org/10.1016/j.bandl.2019.104654 [Google Scholar]
  56. Mårtensson, J., Eriksson, J., Bodammer, N. C., Lindgren, M., Johansson, M., Nyberg, L.,
    (2012) Growth of language- related brain areas after foreign language learning. NeuroImage, 63(1), 240–244. 10.1016/j.neuroimage.2012.06.043
    https://doi.org/10.1016/j.neuroimage.2012.06.043 [Google Scholar]
  57. Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J. P., Ashburner, J., Frackowiak, R. S.,
    (2004) Structural plasticity in the bilingual brain: proficiency in a second language and age at acquisition affect grey-matter density. Nature, 431(7010), 757. 10.1038/431757a
    https://doi.org/10.1038/431757a [Google Scholar]
  58. Mei, L., Chen, C., Xue, G., He, Q., Li, T., Xue, F.,
    (2008) Neural predictors of auditory word learning. Neuroreport, 19(2), 215–219. 10.1097/WNR.0b013e3282f46ea9
    https://doi.org/10.1097/WNR.0b013e3282f46ea9 [Google Scholar]
  59. Milad, M. R., Quinn, B. T., Pitman, R. K., Orr, S. P., Fischl, B., & Rauch, S. L.
    (2005) Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proceedings of the National Academy of Sciences of the United States of America, 102, 10706–10711. 10.1073/pnas.0502441102
    https://doi.org/10.1073/pnas.0502441102 [Google Scholar]
  60. Penfield, W., & Roberts, L.
    (1959) Speech and brain mechanisms. Princeton: Princeton University Press. 10.1515/9781400854677
    https://doi.org/10.1515/9781400854677 [Google Scholar]
  61. Poline, J.-B., Vandenberghe, R., Holmes, A. P., Friston, K. J., & Frackowiak, R. S. J.
    (1996) Reproducibility of PET activation studies: Lessons from a multi-center European experiment: EU concerted action on functional imaging?NeuroImage, 4(1), 34–54. 10.1006/nimg.1996.0027
    https://doi.org/10.1006/nimg.1996.0027 [Google Scholar]
  62. Price, C. J.
    (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191(1), 62–88. 10.1111/j.1749‑6632.2010.05444.x
    https://doi.org/10.1111/j.1749-6632.2010.05444.x [Google Scholar]
  63. (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847. 10.1016/j.neuroimage.2012.04.062
    https://doi.org/10.1016/j.neuroimage.2012.04.062 [Google Scholar]
  64. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., McNamara, J. O., & White, L. E.
    (2008) Neuroscience (4th ed.). Sunderland, MA: Sinauer Associates. pp.15–16.
    [Google Scholar]
  65. Reiterer, S., Pereda, E., & Bhattacharya, J.
    (2011) On a possible relationship between linguistic expertise and EEG gamma band phase synchrony. Frontiers in Psychology, 2, 1–11. 10.3389/fpsyg.2011.00334
    https://doi.org/10.3389/fpsyg.2011.00334 [Google Scholar]
  66. Richardson, F. M., & Price, C. J.
    (2009) Structural MRI studies of language function in the undamaged brain. Brain Structure & Function, 213(6), 511–523. 10.1007/s00429‑009‑0211‑y
    https://doi.org/10.1007/s00429-009-0211-y [Google Scholar]
  67. Rodríguez-Fornells, A., Cunillera, T., Mestres-Missé, A., & de Diego-Balaguer, R.
    (2009) Neurophysiological mechanisms involved in language learning in adults. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1536), 3711–3735. 10.1098/rstb.2009.0130
    https://doi.org/10.1098/rstb.2009.0130 [Google Scholar]
  68. Schlegel, A. A., Rudelson, J. J., & Tse, P. U.
    (2012) White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience, 24(8), 1664–1670. 10.1162/jocn_a_00240
    https://doi.org/10.1162/jocn_a_00240 [Google Scholar]
  69. Schumann, J.
    (2004) The neurobiology of aptitude. InJ. Schumann, S. E. Crowell, N. E. Jones, N. Lee, S. A. Schuchert, & L. A. Wood (Eds.), The neurobiology of learning. Perspectives from second language acquisition (pp.7–21). Mahwah, NJ: Erlbaum.
    [Google Scholar]
  70. Segui, J.
    (1992) Le lexique mental et l’identification des mots écrits : code d’accès et rôle du contexte. Langue Française, 95, 69–79. 10.3406/lfr.1992.5772
    https://doi.org/10.3406/lfr.1992.5772 [Google Scholar]
  71. (2015) Évolution du concept de lexique mental. Revue de Neuropsychologie, 7(1), 21–6. 10.3917/rne.071.0021
    https://doi.org/10.3917/rne.071.0021 [Google Scholar]
  72. Squire, L. R.
    (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231. 10.1037/0033‑295X.99.2.195
    https://doi.org/10.1037/0033-295X.99.2.195 [Google Scholar]
  73. Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., … Dierks, T.
    (2012) Structural plasticity in the language system related to increased second language proficiency. Cortex, 48(4), 458–465. 10.1016/j.cortex.2010.10.007
    https://doi.org/10.1016/j.cortex.2010.10.007 [Google Scholar]
  74. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J.
    (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94(26), 14792–14797. 10.1073/pnas.94.26.14792
    https://doi.org/10.1073/pnas.94.26.14792 [Google Scholar]
  75. Veroude, K., Norris, D. G., Shumskaya, E., Gullberg, M., & Indefrey, P.
    (2010) Functional connectivity between brain regions involved in learning words of a new language. Brain and Language, 113(1), 21–27. 10.1016/j.bandl.2009.12.005
    https://doi.org/10.1016/j.bandl.2009.12.005 [Google Scholar]
  76. Warburton, E., Wise, R. J. S., Price, C. J., Weiller, C., Hadar, U., Ramsay, S., & Frackowiak, R. S. J.
    (1996) Noun and verb retrieval by normal subjects. Studies with PET. Brain, 119, 159–179. 10.1093/brain/119.1.159
    https://doi.org/10.1093/brain/119.1.159 [Google Scholar]
  77. Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S. F., Villringer, A., & Perani, D.
    (2003) Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159–170. 10.1016/S0896‑6273(02)01150‑9
    https://doi.org/10.1016/S0896-6273(02)01150-9 [Google Scholar]
  78. Weber-Fox, C. M., & Neville, H. J.
    (1996) Maturational constraints on functional specializations for language processing: ERP and behavioral evidence in bilingual speakers. Journal of Cognitive Neuroscience8(3), 231–256. 10.1162/jocn.1996.8.3.231
    https://doi.org/10.1162/jocn.1996.8.3.231 [Google Scholar]
  79. Weber-Fox, C., & Neville, H. J.
    (1999) Functional neural subsystems are differentially affected by delays in second-language immersion: ERP and behavioral evidence in bilingual speakers. InD. Birdsong (Ed.), New perspectives on the critical period for second language acquisition (pp.23–38). Hillsdale NJ: Lawrence Erlbaum.
    [Google Scholar]
  80. Wong, P. C. M., Perrachione, T. K., & Parrish, T. B.
    (2007) Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 1006, 995–1006. 10.1002/hbm.20330
    https://doi.org/10.1002/hbm.20330 [Google Scholar]
  81. Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B.,
    (2008) Volume of left Heschl’s gyrus and linguistic pitch learning. Cerebral Cortex, 18(4), 828–836. 10.1093/cercor/bhm115
    https://doi.org/10.1093/cercor/bhm115 [Google Scholar]
  82. Xiang, H., Dediu, D., Roberts, L., van Oort, E., Norris, D. G., & Hagoort, P.
    (2012) The structural connectivity underpinning language aptitude, working memory, and IQ in the perisylvian language network. Language Learning, 62(Suppl. 2), 110–130. 10.1111/j.1467‑9922.2012.00708.x
    https://doi.org/10.1111/j.1467-9922.2012.00708.x [Google Scholar]
  83. Yang, J., Gates, K. M., Molenaar, P., & Li, P.
    (2015) Neural changes underlying successful second language word learning: An fMRI study. Journal of Neurolinguistics, 33, 29–49. 10.1016/j.jneuroling.2014.09.004
    https://doi.org/10.1016/j.jneuroling.2014.09.004 [Google Scholar]
  84. Yang, J., & Li, P.
    (2012) Brain networks of explicit and implicit learning. PLoS One, 7(8), e42993. 10.1371/journal.pone.0042993
    https://doi.org/10.1371/journal.pone.0042993 [Google Scholar]
  85. Zhang, L., Xi, J., Xu, G., Shu, H., Wang, X., & Li, P.
    (2011) Cortical dynamics of acoustic and phonological processing in speech perception. PLoS ONE, 6(6), e20963. 10.1371/journal.pone.0020963
    https://doi.org/10.1371/journal.pone.0020963 [Google Scholar]
  86. Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D.
    (2012) Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48(9), 1197–1206. 10.1016/j.cortex.2011.05.022
    https://doi.org/10.1016/j.cortex.2011.05.022 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/lia.20023.ise
Loading

Most Cited

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error