1887
Volume 16, Issue 2-3
  • ISSN 1871-1340
  • E-ISSN: 1871-1375
USD
Buy:$35.00 + Taxes
Preview this article:

Loading

Article metrics loading...

/content/journals/10.1075/ml.00020.mem
2022-03-08
2022-05-23
Loading full text...

Full text loading...

References

  1. Anderson, J. R. , & Milson, R.
    (1989) Human memory: An adaptive perspective. Psychological Review, 96 (4), 703. 10.1037/0033‑295X.96.4.703
    https://doi.org/10.1037/0033-295X.96.4.703 [Google Scholar]
  2. Baayen, R. H.
    (2010) Demythologizing the word frequency effect: A discriminative learning perspective. The Mental Lexicon, 5 (3), 436–461. 10.1075/ml.5.3.10baa
    https://doi.org/10.1075/ml.5.3.10baa [Google Scholar]
  3. Dennett, D. C.
    (2006) The frame problem of AI. Philosophy of Psychology: Contemporary Readings, 433 , 67–83.
    [Google Scholar]
  4. Hollis, G.
    (2009) Observed Interdependence of Cognition and Action: The Hand Says’ No’to ROWS (Doctoral dissertation, University of Cincinnati).
  5. Hollis, G. , Kloos, H. , & Van Orden, G. C.
    (2009) Origins of order in cognitive activity. In S. J. Guastello , M. Koopmans , & D. Pincus (Eds.), Chaos and complexity in psychology: The theory of nonlinear dynamical systems (pp.206–241). Boston, MA: Cambridge University Press.
    [Google Scholar]
  6. Hollis, G.
    (2017) Estimating the average need of semantic knowledge from distributional semantic models. Memory & Cognition, 45 (8), 1350–1370. 10.3758/s13421‑017‑0732‑1
    https://doi.org/10.3758/s13421-017-0732-1 [Google Scholar]
  7. Hollis, G. , & Westbury, C.
    (2016) The principals of meaning: Extracting semantic dimensions from co-occurrence models of semantics. Psychonomic Bulletin & Review23.6 (2016): 1744–1756. 10.3758/s13423‑016‑1053‑2
    https://doi.org/10.3758/s13423-016-1053-2 [Google Scholar]
  8. Hollis, G.
    (2018) Scoring best-worst data in unbalanced many-item designs, with applications to crowdsourcing semantic judgments. Behavior Research Methods, 50 (2), 711–729. 10.3758/s13428‑017‑0898‑2
    https://doi.org/10.3758/s13428-017-0898-2 [Google Scholar]
  9. (2019) Learning about things that never happened: A critique and refinement of the Rescorla-Wagner update rule when many outcomes are possible. Memory & Cognition, 47 (7), 1415–1430. 10.3758/s13421‑019‑00942‑4
    https://doi.org/10.3758/s13421-019-00942-4 [Google Scholar]
  10. (2020a) The role of number of items per trial in best–worst scaling experiments. Behavior Research Methods, 52 (2), 694–722. 10.3758/s13428‑019‑01270‑w
    https://doi.org/10.3758/s13428-019-01270-w [Google Scholar]
  11. (2020b) Delineating linguistic contexts, and the validity of context diversity as a measure of a word’s contextual variability. Journal of Memory and Language, 114 , 104146. 10.1016/j.jml.2020.104146
    https://doi.org/10.1016/j.jml.2020.104146 [Google Scholar]
  12. Hollis, G. , & Westbury, C.
    (2006) NUANCE: Naturalistic University of Alberta nonlinear correlation explorer. Behavior Research Methods, 38 (1), 8–23. 10.3758/BF03192745
    https://doi.org/10.3758/BF03192745 [Google Scholar]
  13. (2018) When is best-worst best? A comparison of best-worst scaling, numeric estimation, and rating scales for collection of semantic norms. Behavior Research Methods, 50 (1), 115–133. 10.3758/s13428‑017‑1009‑0
    https://doi.org/10.3758/s13428-017-1009-0 [Google Scholar]
  14. Hollis, G. , Westbury, C. , & Lefsrud, L.
    (2017) Extrapolating human judgments from skip-gram vector representations of word meaning. Quarterly Journal of Experimental Psychology, 70 (8), 1603–1619. 10.1080/17470218.2016.1195417
    https://doi.org/10.1080/17470218.2016.1195417 [Google Scholar]
  15. Hollis, G. , Westbury, C. F. , & Peterson, J. B.
    (2006) NUANCE 3.0: Using genetic programming to model variable relationships. Behavior Research Methods, 38 (2), 218–228. 10.3758/BF03192772
    https://doi.org/10.3758/BF03192772 [Google Scholar]
  16. Mandera, P. , Keuleers, E. , & Brysbaert, M.
    (2015) How useful are corpus-based methods for extrapolating psycholinguistic variables?The Quarterly Journal of Experimental Psychology, 68(8), 1623–1642. 10.1080/17470218.2014.988735
    https://doi.org/10.1080/17470218.2014.988735 [Google Scholar]
  17. Osgood, C. E. , Suci, G. J. , & Tannenbaum, P. H.
    (1957) The Measurement of Meaning. Urbana, IL: University of Illinois Press.
    [Google Scholar]
  18. Pylyshyn, Z. W.
    (1987) The robot’s dilemma. Norwood, NJ: Ablex Publishing Corporation.
    [Google Scholar]
  19. Rescorla, R. A. , & Wagner, A. R.
    (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory, 2 , 64–99.
    [Google Scholar]
  20. Sidhu, D. M. , Westbury, C. , Hollis, G. , & Pexman, P. M.
    (2021) Sound symbolism shapes the English language: The maluma/takete effect in English nouns. Psychonomic Bulletin & Review, 1–9. 10.3758/s13423‑021‑01883‑3
    https://doi.org/10.3758/s13423-021-01883-3 [Google Scholar]
  21. Snefjella, B. , & Blank, I.
    (2020) Computational Estimation of Lexical Semantic Norms: A New Framework. The 34th CUNY Conference on Human Sentence Processing.
    [Google Scholar]
  22. Van Orden, G. , Hollis, G. , & Wallot, S.
    (2012) The blue-collar brain. Frontiers in Physiology, 3 , 207. 10.3389/fphys.2012.00207
    https://doi.org/10.3389/fphys.2012.00207 [Google Scholar]
  23. Westbury, C. , Hollis, G. , Sidhu, D. M. , & Pexman, P. M.
    (2018) Weighing up the evidence for sound symbolism: Distributional properties predict cue strength. Journal of Memory and Language, 99 , 122–150. 10.1016/j.jml.2017.09.006
    https://doi.org/10.1016/j.jml.2017.09.006 [Google Scholar]
  24. Westbury, C. , & Hollis, G.
    (2007) Putting Humpty Together Again: Synthetic Approaches to Nonlinear Variable Effects Underlying Lexical Access (pp.7–30). In: Jarema, G. & Libben, B. The Mental Lexicon: Core Perspectives. Bingley, UK: Emerald Group Publishing Ltd.
    [Google Scholar]
  25. (2019a) Conceptualizing syntactic categories as semantic categories: Unifying part-of-speech identification and semantics using co-occurrence vector averaging. Behavior Research Methods, 51 (3), 1371–1398. 10.3758/s13428‑018‑1118‑4
    https://doi.org/10.3758/s13428-018-1118-4 [Google Scholar]
  26. (2019b) Wriggly, squiffy, lummox, and boobs: What makes some words funny?. Journal of Experimental Psychology: General, 148 (1), 97. 10.1037/xge0000467
    https://doi.org/10.1037/xge0000467 [Google Scholar]
  27. (2021) A pompous snack: On the unreasonable complexity of the world’s third-worst jokes. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale.   10.1037/cep0000234
    https://doi.org/10.1037/cep0000234 [Google Scholar]
  28. Wheeler, M.
    (2008) Cognition in context: phenomenology, situated robotics and the frame problem. International Journal of Philosophical Studies, 16 (3), 323–349. 10.1080/09672550802113235
    https://doi.org/10.1080/09672550802113235 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/ml.00020.mem
Loading
  • Article Type: Obituary
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error