1887
Volume 18, Issue 2
  • ISSN 1871-1340
  • E-ISSN: 1871-1375
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Morphological processing has been extensively studied in English and European languages, but there is a growing interest in extending the research to other languages. Here we examined Malay, an Austronesian language that is morphologically rich. We investigated the effects of morphological constituents on lexical decisions for prefixed words. Specifically, we explored whether readers are sensitive to any distributional properties of the prefix and root morphemes. Variables investigated included length and family size for both prefixes and roots, as well as number of allomorphs, consistency, and productivity for prefixes. Decision latencies were collected for 1,280 Malay words of various morphological structures. Data from the 640 prefixed words were analyzed in a series of GAMM models. We observed a facilitative effect of root family size and an effect of several distributional properties of prefixes on decision latencies after accounting for word frequency and length. Furthermore, a larger interaction between frequency and several distributional properties of prefixes was found for words with three-letter prefixes than for those with two-letter prefixes. These findings provide insight into the types of distributional properties to which Malay readers are sensitive in multimorphemic words.

Loading

Article metrics loading...

/content/journals/10.1075/ml.00023.maz
2024-02-01
2024-10-13
Loading full text...

Full text loading...

References

  1. Amenta, S., & Crepaldi, D.
    (2012) Morphological processing as we know it: An analytical review of morphological effects in visual word identification. Frontiers in Psychology, 31, 1 – 12. 10.3389/fpsyg.2012.00232
    https://doi.org/10.3389/fpsyg.2012.00232 [Google Scholar]
  2. Baayen, R. H., Chuang, Y. Y., Shafaei-Bajestan, E., & Blevins, J. P.
    (2019) The discriminative lexicon: A Unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de) composition but in linear discriminative learning. Complexity, 2019, 4895891. 10.1155/2019/4895891
    https://doi.org/10.1155/2019/4895891 [Google Scholar]
  3. Baayen, R. H., Dijkstra, T., & Schreuder, R.
    (1997) Singulars and plurals in Dutch: Evidence for a parallel dual-route model. Journal of Memory and Language, 37(1), 94 – 117. 10.1006/jmla.1997.2509
    https://doi.org/10.1006/jmla.1997.2509 [Google Scholar]
  4. Baayen, R. H., Feldman, L. B., & Schreuder, R.
    (2006) Morphological influences on the recognition of monosyllabic monomorphemic words. Journal of Memory and Language, 55(2), 290–313. 10.1016/j.jml.2006.03.008
    https://doi.org/10.1016/j.jml.2006.03.008 [Google Scholar]
  5. Baayen, R. H. & Renouf, A.
    (1996) Reading the Times: Productive lexical innovations in an English newspaper. Language, 72(1), 69–96. 10.2307/416794
    https://doi.org/10.2307/416794 [Google Scholar]
  6. Baayen, R. H., Wurm, L. H., & Aycock, J.
    (2007) Lexical dynamics for low-frequency complex words: A regression study across tasks and modalities. The Mental Lexicon, 2(3), 419 – 463. 10.1075/ml.2.3.06baa
    https://doi.org/10.1075/ml.2.3.06baa [Google Scholar]
  7. Balling, L. W., & Baayen, R. H.
    (2008) Morphological effects in auditory word recognition: Evidence from Danish. Language and Cognitive Processes, 23(7–8), 1159–1190. 10.1080/01690960802201010
    https://doi.org/10.1080/01690960802201010 [Google Scholar]
  8. Bertram, R., Schreuder, R., & Baayen, R. H.
    (2000) The balance of storage and computation in morphological processing: The role of word formation type, affixal homophony, and productivity. Journal of Experimental Psychology: Learning, Memory, & Cognition, 261, 489–511. 10.1037/0278‑7393.26.2.489
    https://doi.org/10.1037/0278-7393.26.2.489 [Google Scholar]
  9. Caramazza, A., Laudanna, A., & Romani, C.
    (1988) Lexical access and inflectional morphology. Cognition, 28(3), 297–332. 10.1016/0010‑0277(88)90017‑0
    https://doi.org/10.1016/0010-0277(88)90017-0 [Google Scholar]
  10. Chateau, D., Knudsen, E. V. & Jared, D.
    (2002) Masked priming of prefixes and the influence of spelling-meaning consistency. Brain and Language, 81(1–3), 587–600. 10.1006/brln.2001.2549
    https://doi.org/10.1006/brln.2001.2549 [Google Scholar]
  11. Chuang, Y., Fon, J., & Baayen, R. H.
    (2020) Analyzing phonetic data with generalized additive mixed models. 10.31234/osf.io/bd3r4
    https://doi.org/10.31234/osf.io/bd3r4 [Google Scholar]
  12. Colé, P., Beauvillain, C., & Segui, J.
    (1989) On the representation and processing of prefixed and suffixed derived words: a differential frequency effect. Journal of Memory and Language, 281, 1 – 13. 10.1016/0749‑596X(89)90025‑9
    https://doi.org/10.1016/0749-596X(89)90025-9 [Google Scholar]
  13. De Jong, N., Schreuder, R. & Baayen, R. H.
    (2000) The morphological family size effect and morphology, Language and Cognitive Processes, 15(4/5), 329–365. 10.1080/01690960050119625
    https://doi.org/10.1080/01690960050119625 [Google Scholar]
  14. Denistia, K., and Baayen, R. H.
    (2019) The Indonesian prefixes PE- and PEN-: A study in productivity and allomorphy. Morphology, 29(3), 385–407. 10.1007/s11525‑019‑09340‑7
    https://doi.org/10.1007/s11525-019-09340-7 [Google Scholar]
  15. Denistia, K., & Baayen, R. H.
    (2021) The morphology of Indonesian: Data and quantitative modeling. InC. Shei (Ed.), The Routledge handbook of Asian linguistics. Routledge.
    [Google Scholar]
  16. Dijkstra, T., Moscoso del Prado Martín, F., Schulpen, B., Schreuder, R., & Baayen, R. H.
    (2005) A roommate in cream: Morphological family size effects on interlingual homograph recognition. Language and Cognitive Processes, 201, 7 – 41. 10.1080/01690960444000124
    https://doi.org/10.1080/01690960444000124 [Google Scholar]
  17. Ford, M. A., Davis, M. H., & Marslen-Wilson, W. D.
    (2010) Derivational morphology and base morpheme frequency. Journal of Memory and Language, 631, 117 – 130. 10.1016/j.jml.2009.01.003
    https://doi.org/10.1016/j.jml.2009.01.003 [Google Scholar]
  18. Frauenfelder, U. H., & Schreuder, R.
    (1992) Constraining psycholinguistic models of morphological processing and representation: The role of productivity (pp.165–183). Springer Netherlands.
    [Google Scholar]
  19. Friedman, J., Hastie, T., & Tibshirani, R.
    (2010) Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1 – 22. 10.18637/jss.v033.i01
    https://doi.org/10.18637/jss.v033.i01 [Google Scholar]
  20. Friedman, J., Hastie, T., Tibshirani, R., Simon, N., Narasimhan, B., & Qian, J.
    (2018) Package “glmnet”, Version 2.0–13.
    [Google Scholar]
  21. Hassan, A.
    (2006) Morfologi. PTS Professional Publishing.
    [Google Scholar]
  22. Heitmeier, M., Chuang, Y.-Y., Axen, S. D., & Baayen, R. H.
    (2023) Frequency effects in linear discriminative learning. arXiv preprint arXiv:2306.11044. 10.3389/fnhum.2023.1242720
    https://doi.org/10.3389/fnhum.2023.1242720 [Google Scholar]
  23. Jared, D., Jouravlev, O., & Joanisse, M. F.
    (2017) The effect of semantic transparency on the processing of morphologically derived words: Evidence from decision latencies and event-related potentials. Journal of Experimental Psychology: Learning, Memory, & Cognition, 431, 422 – 450. 10.1037/xlm0000316
    https://doi.org/10.1037/xlm0000316 [Google Scholar]
  24. Järvikivi, J., Bertram, R., & Niemi, J.
    (2006) Affixal salience and the processing of derivational morphology: The role of suffix allomorphy. Language and Cognitive Processes, 21(4), 394 – 431. 10.1080/01690960400013213
    https://doi.org/10.1080/01690960400013213 [Google Scholar]
  25. Kauschke, C., Stenneken, P.
    (2008) Differences in Noun and Verb Processing in Lexical Decision Cannot be Attributed to Word Form and Morphological Complexity Alone. J Psycholinguist Res371, 443 – 452. 10.1007/s10936‑008‑9073‑3
    https://doi.org/10.1007/s10936-008-9073-3 [Google Scholar]
  26. Kuperman, V., Bertram, R., & Baayen, R. H.
    (2010) Processing trade-offs in the reading of Dutch derived words. Journal of Memory and Language, 621, 83 – 97. 10.1016/j.jml.2009.10.001
    https://doi.org/10.1016/j.jml.2009.10.001 [Google Scholar]
  27. Laudanna, A., & Burani, C.
    (1995) Distributional properties of derivational affixes: Implications for processing. InL. B. Feldman (Ed.), Morphological aspects of language processing (pp.345 – 364). Lawrence Erlbaum Associates, Inc.
    [Google Scholar]
  28. Laudanna, A., Burani, C., & Cermele, A.
    (1994) Prefixes as processing units. Language and Cognitive Processes, 9(3), 295 – 316. 10.1080/01690969408402121
    https://doi.org/10.1080/01690969408402121 [Google Scholar]
  29. Li, Z. & Wood, S. N.
    (2019) Faster model matrix crossproducts for large generalized linear models with discretized covariates. Statistics and Computing, 301, 19 – 25. 10.1007/s11222‑019‑09864‑2
    https://doi.org/10.1007/s11222-019-09864-2 [Google Scholar]
  30. Lõo, K., Järvikivi, J., & Baayen, R. H.
    (2018) Whole-word frequency and inflectional paradigm size facilitate Estonian case-inflected noun processing. Cognition, 1751, 20 – 25. 10.1016/j.cognition.2018.02.002
    https://doi.org/10.1016/j.cognition.2018.02.002 [Google Scholar]
  31. Mailhot, H., Wilson, M. A., Macoir, J., Deacon, S. H., & Sánchez-Gutiérrez, C. H.
    (2020) MorphoLex-FR: A derivational morphological database for 38,840 French words. Behavior Research Methods, 521, 1008 – 1025. 10.3758/s13428‑019‑01297‑z
    https://doi.org/10.3758/s13428-019-01297-z [Google Scholar]
  32. Marelli, M., & Baroni, M.
    (2015) Affixation in semantic space: Modeling morpheme meanings with compositional distributional semantics. Psychological Review, 122(3), 485 – 515. 10.1037/a0039267
    https://doi.org/10.1037/a0039267 [Google Scholar]
  33. Marelli, M., Traficante, D., & Burani, C.
    (2020) Reading morphologically complex words: Experimental evidence and learning models. InV. Pirelli, I. Plag, & U. Dressler (Eds.), Word knowledge and word usage: A cross-disciplinary guide to the mental lexicon (pp.553 – 592). De Gruyter Mouton. 10.1515/9783110440577‑014
    https://doi.org/10.1515/9783110440577-014 [Google Scholar]
  34. Maziyah Mohamed, M., Yap, M. J., Chee, Q. W., Jared, D.
    (2023) Malay Lexicon Project 2: Morphology in Malay word recognition. Memory and Cognition, 511, 647 – 665. 10.3758/s13421‑022‑01337‑8
    https://doi.org/10.3758/s13421-022-01337-8 [Google Scholar]
  35. Moscoso del Prado Martín, F., Bertram, R., Häikiö, T., Schreuder, R., & Baayen, R. H.
    (2004) Morphological family size in a morphologically rich language: The case of Finnish compared with Dutch and Hebrew. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(6), 1271 – 1278. 10.1037/0278‑7393.30.6.1271
    https://doi.org/10.1037/0278-7393.30.6.1271 [Google Scholar]
  36. Moscoso del Prado Martin, F., Deutsch, A., Frost, R., Schreuder, R., Jong, N. H. de, and Baayen, R. H.
    (2005) Changing places: A cross-language perspective on frequency and family size in Dutch and Hebrew. Journal of Memory and Language, 531, 496–512. 10.1016/j.jml.2005.07.003
    https://doi.org/10.1016/j.jml.2005.07.003 [Google Scholar]
  37. Plaut, D. C., & Gonnerman, L. M.
    (2000) Are non-semantic morphological effects incompatible with a distributed connectionist approach to lexical processing?Language and Cognitive Processes, 15(4–5), 445 – 485. 10.1080/01690960050119661
    https://doi.org/10.1080/01690960050119661 [Google Scholar]
  38. R Core Team
    R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/
    [Google Scholar]
  39. Rastle, K., & Davis, M. H.
    (2008) Morphological decomposition based on the analysis of orthography. Language and Cognitive Processes, 23(7–8), 942 – 971. 10.1080/01690960802069730
    https://doi.org/10.1080/01690960802069730 [Google Scholar]
  40. Rastle, K., Davis, M. H., & New, B.
    (2004) The broth in my brother’s brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11(6), 1090–1098. 10.3758/BF03196742
    https://doi.org/10.3758/BF03196742 [Google Scholar]
  41. Rueckl, J. G., & Seidenberg, M. S.
    (2009) Computational modeling and the neural bases of reading and reading disorders. InK. Pugh & P. McCardle (Eds.), How children learn to read: Current issues and new directions in the integration of cognition, neurobiology and genetics of reading and dyslexia research and practice (pp.101 – 133). Psychology Press.
    [Google Scholar]
  42. Rueckl, J. G., & Raveh, M.
    (1999) The influence of morphological regularities on the dynamics of a connectionist network. Brain and Language, 68(1–2), 110–117. 10.1006/brln.1999.2106
    https://doi.org/10.1006/brln.1999.2106 [Google Scholar]
  43. Sánchez-Gutiérrez, C. H., Mailhot, H., & Deacon, S. H.
    (2018) MorphoLex: A derivational morphological database for 70,000 English words. Behavior Research Methods, 50(4), 1568 – 1580. 10.3758/s13428‑017‑0981‑8
    https://doi.org/10.3758/s13428-017-0981-8 [Google Scholar]
  44. Schreuder, R., & Baayen, R. H.
    (1995) Modeling morphological processing. InL. B. Feldman (Ed.), Morphological aspects of language processing (pp.131 – 154). Lawrence Erlbaum Associates, Inc.
    [Google Scholar]
  45. (1997) How complex simplex words can be. Journal of Memory and Language, 37(1), 118 – 139. 10.1006/jmla.1997.2510
    https://doi.org/10.1006/jmla.1997.2510 [Google Scholar]
  46. Taft, M.
    (2006) A localist-cum-distributed (LCD) framework for lexical processing. InS. Andrews (Ed.), From inkmarks to ideas: Current issues in lexical processing (pp.76 – 94). Hove, UK: Psychology Press.
    [Google Scholar]
  47. (2023) Localist Lexical Representation of Polymorphemic Words: The AUSTRAL Model. InLinguistic Morphology in the Mind and Brain (pp.152 – 166). Routledge. 10.4324/9781003159759‑11
    https://doi.org/10.4324/9781003159759-11 [Google Scholar]
  48. Taft, M., & Ardasinski, S.
    (2006) Obligatory decomposition in reading prefixed words. The Mental Lexicon, 1(2), 183 – 199. 10.1075/ml.1.2.02taf
    https://doi.org/10.1075/ml.1.2.02taf [Google Scholar]
  49. Taft, M., & Forster, K. I.
    (1975) Lexical storage and retrieval of prefixed words. Journal of Verbal Learning & Verbal Behavior, 14(6), 638 – 647. 10.1016/S0022‑5371(75)80051‑X
    https://doi.org/10.1016/S0022-5371(75)80051-X [Google Scholar]
  50. (1976) Lexical storage and retrieval of polymorphemic and polysyllabic words. Journal of Verbal Learning & Verbal Behavior, 15(6), 607 – 620. 10.1016/0022‑5371(76)90054‑2
    https://doi.org/10.1016/0022-5371(76)90054-2 [Google Scholar]
  51. Tomaschek, F., Hendrix, P., & Baayen, R. H.
    (2018) Strategies for managing collinearity in multivariate linguistic data. Journal of Phonetics, 711, 249 – 267. 10.1016/j.wocn.2018.09.004
    https://doi.org/10.1016/j.wocn.2018.09.004 [Google Scholar]
  52. Vannest, J., Bertram, R., Järvikivi, J., & Niemi, J.
    (2002) Counterintuitive cross-linguistic differences: More morphological computation in English than in Finnish. Journal of Psycholinguistic Research, 31(2), 83 – 106. 10.1023/A:1014934915952
    https://doi.org/10.1023/A:1014934915952 [Google Scholar]
  53. van Rij, J., Wieling, M., Baayen, R., van Rijn, H.
    (2020) “itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs.” R package version 2.4.
    [Google Scholar]
  54. Wood, S.
    (2017) Generalized Additive Models: An Introduction with R (2nd ed.). Chapman and Hall/CRC. 10.1201/9781315370279
    https://doi.org/10.1201/9781315370279 [Google Scholar]
  55. Wood, S.N., Li, Z., Shaddick, G. & Augustin N.H.
    (2017) Generalized additive models for gigadata: Modeling the U.K. black smoke network daily data. Journal of the American Statistical Association, 112(519),1199 – 1210. 10.1080/01621459.2016.1195744
    https://doi.org/10.1080/01621459.2016.1195744 [Google Scholar]
  56. Yap, M. J., Rickard Liow, S. J., Jalil, S., & Faizal, S. S.
    (2010) The Malay Lexicon Project: A database of lexical statistics for 9,592 words. Behavior Research Methods, 42(4), 992 – 1003. 10.3758/BRM.42.4.992
    https://doi.org/10.3758/BRM.42.4.992 [Google Scholar]
/content/journals/10.1075/ml.00023.maz
Loading
/content/journals/10.1075/ml.00023.maz
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error