1887
Volume 12, Issue 2
  • ISSN 1871-1340
  • E-ISSN: 1871-1375
USD
Buy:$35.00 + Taxes

Abstract

Research has shown that, in English, the mapping between a word’s form and its syntactic category is not entirely arbitrary. Though formal differences between lexical categories are subtle, adults are sensitive to them and access this knowledge when retrieving or manipulating grammatical category information. Studies of form typicality have so far exclusively investigated unambiguous (or disambiguated) wordforms. We test the prediction that form typicality also affects visual processing of ambiguous wordforms, with formal features correlating, not with a form’s designation as a particular category, but with a form’s of being as a particular category. Our results indicate that “form discrepancy”, a measure of how well a form’s category usage matches up with its form (i.e. typically nouny forms associated with high probability of usage as a noun), is a significant predictor of lexical decision response time. These data are in line with models in which category is not specified for roots in the lexicon but rather assigned within syntactic or semantic context, and show that distributional information about grammatical category usage is automatically accessed in visual word processing.

Loading

Article metrics loading...

/content/journals/10.1075/ml.17004.sha
2018-03-15
2019-10-21
Loading full text...

Full text loading...

References

  1. Abdi, H.
    (2003) Factor Rotations in Factor Analyses. In M. Lewis-Beck , A. Bryman ., & T. Futing (Eds.), Encyclopedia of Social Science Research (pp.1–8). Thousand Oaks (CA): Sage.
    [Google Scholar]
  2. Akaike, H.
    (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi: 10.1109/TAC.1974.1100705
    https://doi.org/10.1109/TAC.1974.1100705 [Google Scholar]
  3. Baayen, R. H.
    (1995) The CELEX lexical database (release 2). Philadelphia: Linguistic Data.
  4. Balota, D. A. , Yap, M. J. , Cortese, M. J. , Hutchison, K. A. , Kessler, B. , Loftis, B. , Neely, J. H. , Simpson, G. B. , & Treiman, R.
    (2007) The english lexicon project. Behavior Research Methods, 39(3), 445–459. doi: 10.3758/BF03193014
    https://doi.org/10.3758/BF03193014 [Google Scholar]
  5. Belsley, D. A. , Kuh, E. , & Welsch, R. E.
    (1980) Regression diagnostics: identifying sources of influential observations and collinearity. New York: Wiley. doi: 10.1002/0471725153
    https://doi.org/10.1002/0471725153 [Google Scholar]
  6. Brysbaert, M. , & New, B.
    (2009) Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. doi: 10.3758/BRM.41.4.977
    https://doi.org/10.3758/BRM.41.4.977 [Google Scholar]
  7. Buchanan, L. , Westbury, C. , & Burgess, C.
    (2001) Characterising semantic space: Neighborhood effects in word recognition. Psychonomic Bulletin & Review, 8(3), 531–544. doi: 10.3758/BF03196189
    https://doi.org/10.3758/BF03196189 [Google Scholar]
  8. De Saussure, F.
    (1916) Nature of the linguistic sign. InCourse in general linguistics, 65–70.
    [Google Scholar]
  9. Cassidy, K. W. , & Kelly, M. H.
    (1991) Phonological information for grammatical category assignments. Journal of Memory and Language, 30(3), 348–369. doi: 10.1016/0749‑596X(91)90041‑H
    https://doi.org/10.1016/0749-596X(91)90041-H [Google Scholar]
  10. Dikker, S. , & Pylkkänen, L.
    (2011) Before the N400: Effects of lexical-semantic violations in visual cortex. Brain and Language, 118, 23–28. doi: 10.1016/j.bandl.2011.02.006
    https://doi.org/10.1016/j.bandl.2011.02.006 [Google Scholar]
  11. Dikker, S. , Rabagliati, H. , & Pylkkänen, L.
    (2009) Sensitivity to syntax in visual cortex. Cognition, 110(3), 293–321. doi: 10.1016/j.cognition.2008.09.008
    https://doi.org/10.1016/j.cognition.2008.09.008 [Google Scholar]
  12. Dikker, S. , Rabagliati, H. , Farmer, T. , & Pylkkänen, L.
    (2010) Early occipital sensitivity to syntactic category is based on form typicality. Psychological Science, 21(5), 629–634. doi: 10.1177/0956797610367751
    https://doi.org/10.1177/0956797610367751 [Google Scholar]
  13. Embick, D. , & Marantz, A.
    (2005) Cognitive neuroscience and the English past tense: Comments on the paper by Ullman et al.Brain and language, 93(2), 243–247. doi: 10.1016/j.bandl.2004.10.003
    https://doi.org/10.1016/j.bandl.2004.10.003 [Google Scholar]
  14. Farmer, T. , Christiansen, M. H. , & Monaghan, P.
    (2006) Phonological typicality influences on-line sentence comprehension. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12203–12208. doi: 10.1073/pnas.0602173103
    https://doi.org/10.1073/pnas.0602173103 [Google Scholar]
  15. Farmer, T. , Monaghan, P. , Misyak, J. B. , & Christiansen, M. H.
    (2011) Phonological typicality influences sentence processing in predictive contexts: Reply to Staub, Grant, Clifton, and Rayner (2009). Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(5), 1318–1325.
    [Google Scholar]
  16. Friederici, A. D.
    (2002) Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6(2), 78–84. doi: 10.1016/S1364‑6613(00)01839‑8
    https://doi.org/10.1016/S1364-6613(00)01839-8 [Google Scholar]
  17. Jurafsky, D. , & Martin, J.
    (2008) Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. Prentice Hall.
  18. Kaiser, H. F.
    (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. doi: 10.1007/BF02289233
    https://doi.org/10.1007/BF02289233 [Google Scholar]
  19. Kelly, M. H.
    (1992) Using sound to solve syntactic problems: the role of phonology in grammatical category assignments. Psychological Review, 99(2), 349–364. doi: 10.1037/0033‑295X.99.2.349
    https://doi.org/10.1037/0033-295X.99.2.349 [Google Scholar]
  20. Kelly, M. H. , & Bock, J. K.
    (1988) Stress in time. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 389–403.
    [Google Scholar]
  21. King, J. , Linzen, T. , and Marantz, A.
    (in press). Syntactic categories as lexical features or syntactic heads: An MEG approach. [ling.auf.net/lingbuzz/002477
  22. Köhler, W.
    (1947) Gestalt psychology (2nd edn.). New York: Liveright Publishing.
  23. Linzen, T.
    (2015) Probabilistic linguistic representations: between learning and processing (Unpublished doctoral dissertation). New York University, New York City.
  24. Lumley, T. using Fortran code by Alan Miller
    (2009) leaps: regression subset selection. R package version 2.9. CRAN.R-project.org/package=leaps
  25. MacWhinney, B.
    (2000) The CHILDES project: Tools for analyzing talk (3rd ed). Mahwah, NJ: Lawrence Erlbaum Associates.
    [Google Scholar]
  26. Marchand, H.
    (1969) The Categories and Types of Present-day English Word-formation (2nd Edition). Munich, Federal Republic of Germany: C.H. Beck’sche Verlagsbuchhandlung.
    [Google Scholar]
  27. Mansfield, E. R. , & Helms, B. P.
    (1982) Detecting multicollinearity. The American Statistician, 36(3a), 158–160. doi: 10.1080/00031305.1982.10482818
    https://doi.org/10.1080/00031305.1982.10482818 [Google Scholar]
  28. Monaghan, P. , Chater, N. , & Christiansen, M. H.
    (2005) The differential role of phonological and distributional cues in grammatical categorisation. Cognition, 96(2), 143–182. doi: 10.1016/j.cognition.2004.09.001
    https://doi.org/10.1016/j.cognition.2004.09.001 [Google Scholar]
  29. Monaghan, P. , Christiansen, M. H. , Farmer, T. , & Fitneva, S.
    (2010) Measures of phonological typicality: Robust coherence and psychological validity. The Mental Lexicon, 5(3), 281–299. doi: 10.1075/ml.5.3.02mon
    https://doi.org/10.1075/ml.5.3.02mon [Google Scholar]
  30. Morgan, J. L. , Shi, R. , & Allopenna, P.
    (1996) Perceptual bases of grammatical categories. In J. L. Morgan , & K. Demuth (Eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition. Mahwah, NJ: Lawrence Erlbaum Associates, 263–283.
    [Google Scholar]
  31. O’Brien, R. M.
    (2007) A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41(5), 673–690. doi: 10.1007/s11135‑006‑9018‑6
    https://doi.org/10.1007/s11135-006-9018-6 [Google Scholar]
  32. R Core Team
    R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URLwww.R-project.org/.
  33. Reilly, J. , & Kean, J.
    (2007) Formal distinctiveness of high‐and low‐imageability nouns: Analyses and theoretical implications. Cognitive science, 31(1), 157–168. doi: 10.1080/03640210709336988
    https://doi.org/10.1080/03640210709336988 [Google Scholar]
  34. Reilly, J. , Hung, J. , & Westbury, C.
    (2016) Non‐Arbitrariness in Mapping Word Form to Meaning: Cross‐Linguistic Formal Markers of Word Concreteness. Cognitive Science, 1–19.
    [Google Scholar]
  35. Revelle, W.
    (2015) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA, CRAN.R-project.org/package=psychVersion = 1.5.8.
  36. Sapir, E.
    (1929) A study in phonetic symbolism. Journal of experimental psychology, 12(3), 225. doi: 10.1037/h0070931
    https://doi.org/10.1037/h0070931 [Google Scholar]
  37. Sereno, J. A. , & Jongman, A.
    (1990) Phonological and Form Class Relations in the Lexicon, Journal of Psycholinguistic Research19(6), 387–404. doi: 10.1007/BF01068886
    https://doi.org/10.1007/BF01068886 [Google Scholar]
  38. Sherman, D.
    (1975) Noun-verb stress alternation: an example of the lexical diffusion of sound chance in English. Linguistics, 13(159), 43–72. doi: 10.1515/ling.1975.13.159.43
    https://doi.org/10.1515/ling.1975.13.159.43 [Google Scholar]
  39. Shibata, R.
    (1981) An optimal selection of regression variables. Biometrika, 68(1), 45–54. doi: 10.1093/biomet/68.1.45
    https://doi.org/10.1093/biomet/68.1.45 [Google Scholar]
  40. Spieler, D. H. , & Balota, D. A.
    (1997) Bringing computational models of word naming down to the item level. Psychological Science, 8(6), 411–416. doi: 10.1111/j.1467‑9280.1997.tb00453.x
    https://doi.org/10.1111/j.1467-9280.1997.tb00453.x [Google Scholar]
  41. Staub, A. , Grant, M. , Clifton, C. , & Rayner, K.
    (2009) Phonological typicality does not influence fixation durations in normal reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 806–14.
    [Google Scholar]
  42. Storkel, H. L. , Armbruster, J. , & Hogan, T. P.
    (2006) Differentiating phonotactic probability and neighborhood density in adult word learning. Journal of Speech, Language, and Hearing Research, 49(6), 1175–1192. doi: 10.1044/1092‑4388(2006/085)
    https://doi.org/10.1044/1092-4388(2006/085) [Google Scholar]
  43. Tabak, W. , Schreuder, R. , & Baayen, R. H.
    (2005) Lexical statistics and lexical processing: semantic density, information complexity, sex, and irregularity in Dutch. In S. Kepser & M. Reis (Eds.), Linguistic evidence: Empirical, theoretical, and computational perspectives (pp.529–555). Berlin: Mouton de Gruyter. doi: 10.1515/9783110197549.529
    https://doi.org/10.1515/9783110197549.529 [Google Scholar]
  44. Tarkiainen, A. , Helenius, P. , Hansen, P. C. , Cornelissen, P. L. , & Salmelin, R.
    (1999) Dynamics of letter string perception in the human occipitotemporal cortex. Brain, 122(11), 2119–2131. doi: 10.1093/brain/122.11.2119
    https://doi.org/10.1093/brain/122.11.2119 [Google Scholar]
  45. Turnbull, R. , & Peperkamp, S.
    (2016, November). What governs a language’s lexicon? Determining the organizing principles of phonological neighbourhood networks. InInternational Workshop on Complex Networks and their Applications (pp.83–94). Springer International Publishing.
    [Google Scholar]
  46. Vitevitch, M. S.
    (2002) The influence of phonological similarity neighborhoods on speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(4), 735.
    [Google Scholar]
  47. Vitevitch, M. S. , & Luce, P. A.
    (1999) Probabilistic phonotactics and neighborhood activation in spoken word recognition. Journal of Memory and Language, 40(3), 374–408. doi: 10.1006/jmla.1998.2618
    https://doi.org/10.1006/jmla.1998.2618 [Google Scholar]
  48. Ziegler, J. C. , Muneaux, M. , & Grainger, J.
    (2003) Neighborhood effects in auditory word recognition: Phonological competition and orthographic facilitation. Journal of Memory and Language, 48(4), 779–793. doi: 10.1016/S0749‑596X(03)00006‑8
    https://doi.org/10.1016/S0749-596X(03)00006-8 [Google Scholar]
  49. Zucchini, W.
    (2000) An Introduction to Model Selection. Journal of Mathematical Psychology, 44(1), 41–61. doi: 10.1006/jmps.1999.1276
    https://doi.org/10.1006/jmps.1999.1276 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/ml.17004.sha
Loading
/content/journals/10.1075/ml.17004.sha
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): form typicality , grammatical category , lexical access and phonotactics
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error