1887
Volume 12, Issue 2
  • ISSN 1871-1340
  • E-ISSN: 1871-1375
USD
Buy:$35.00 + Taxes

Abstract

Psycholinguistic researchers identify linguistic variables and assess if they affect cognitive processes. One such variable is letter bigram frequency, or the frequency with which a given letter pair co-occurs in an orthography. While early studies reported that bigram frequency affects visual lexical decision, subsequent, well-controlled studies not shown this effect. Still, researchers continue to use it as a control variable in psycholinguistic experiments. We propose two reasons for the persistence of this variable: (1) Reporting no significant effect of bigram frequency cannot provide evidence for no effect. (2) Despite empirical work, theoretical implications of bigram frequency are largely neglected. We perform Bayes Factor analyses to address the first issue. In analyses of existing large-scale databases, we find no effect of bigram frequency in lexical decision in the British Lexicon Project, and some evidence for an inhibitory effect in the English Lexicon Project. We find strong evidence for an effect in reading aloud. This suggests that, for lexical decision, the effect is unstable, and may depend on item characteristics and task demands rather than reflecting cognitive processes underlying visual word recognition. We call for more consideration of theoretical implications of the presence or absence of a bigram frequency effect.

Loading

Article metrics loading...

/content/journals/10.1075/ml.17009.sch
2018-03-15
2024-09-09
Loading full text...

Full text loading...

References

  1. Andrews, S.
    (1992) Frequency and neighbourhood effects on lexical access: Lexical similarity or orthographic redundancy?Journal of Experimental Psychology: Learning, Memory & Cognition, 18(2), 234–254.
    [Google Scholar]
  2. Baayen, R. H.
    (2008) Analyzing Linguistic Data: A Practical Introduction to Statistics using R. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511801686
    https://doi.org/10.1017/CBO9780511801686 [Google Scholar]
  3. Balota, D. A. , Yap, M. J. , Cortese, M. J. , Hutchison, K. A. , Kessler, B. , Loftis, B. , … Treiman, R.
    (2007) The English Lexicon Project. Behavior Research Methods, 39(3), 445–459. doi: 10.3758/Bf03193014
    https://doi.org/10.3758/Bf03193014 [Google Scholar]
  4. Biedermann, G.
    (1966) The recognition of tachistoscopically presented five-letter words as a function of digram frequency. Journal of Verbal Learning and Verbal Behavior, 5, 208–209. doi: 10.1016/S0022‑5371(66)80020‑8
    https://doi.org/10.1016/S0022-5371(66)80020-8 [Google Scholar]
  5. Binder, J. R. , Medler, D. A. , Westbury, C. F. , Liebenthal, E. , & Buchanan, L.
    (2006) Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage, 33(2), 739–748. doi: 10.1016/j.neuroimage.2006.06.053
    https://doi.org/10.1016/j.neuroimage.2006.06.053 [Google Scholar]
  6. Broadbent, D. , & Gregory, M.
    (1968) Visual perception of words differing in letter digram frequency. Journal of Verbal Learning and Verbal Behavior, 7(2), 569–571. doi: 10.1016/S0022‑5371(68)80052‑0
    https://doi.org/10.1016/S0022-5371(68)80052-0 [Google Scholar]
  7. Chetail, F.
    (2015) Reconsidering the role of orthographic redundancy in visual word recognition. Frontiers in Psychology, 6(645), 1–10. doi: 10.3389/fpsyg.2015.00645
    https://doi.org/10.3389/fpsyg.2015.00645 [Google Scholar]
  8. Chetail, F. , Balota, D. , Treiman, R. , & Content, A.
    (2015) What can megastudies tell us about the orthographic structure of English words?The Quarterly Journal of Experimental Psychology, 68(8), 1519–1540. doi: 10.1080/17470218.2014.963628
    https://doi.org/10.1080/17470218.2014.963628 [Google Scholar]
  9. Coltheart, M. , Davelaar, E. , Jonasson, T. , & Besner, D.
    (1977) Access to the internal lexicon. In S. Dornic (Ed.), Attention and Performance, VI (pp.535–555). Hillsdale, NJ: Erlbaum.
    [Google Scholar]
  10. Coltheart, M. , Rastle, K. , Perry, C. , Langdon, R. , & Ziegler, J.
    (2001) DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256. doi: 10.1037//0033‑295x.108.1.204
    https://doi.org/10.1037//0033-295x.108.1.204 [Google Scholar]
  11. Cutler, A.
    (1981) Making up materials is a confounded nuisance: or Will we be able to run any psycholinguistic experiments at all in 1990?Cognition, 10(1–3), 65–70. doi: 10.1016/0010‑0277(81)90026‑3
    https://doi.org/10.1016/0010-0277(81)90026-3 [Google Scholar]
  12. Davis, C.
    (2005) N-Watch: A program for deriving neighborhood size and other psycholinguistic statistics. Behavior Research Methods, 37(1), 65–70. doi: 10.3758/bf03206399
    https://doi.org/10.3758/bf03206399 [Google Scholar]
  13. Dehaene, S.
    (2009) Reading in the brain: The new science of how we read. London: Penguin.
    [Google Scholar]
  14. Dehaene, S. , Cohen, L. , Sigman, M. , & Vinckier, F.
    (2005) The neural code for written words: a proposal. Trends in Cognitive Sciences, 9(7), 335–341. doi: 10.1016/J.Tics.2005.05.004
    https://doi.org/10.1016/J.Tics.2005.05.004 [Google Scholar]
  15. Dienes, Z.
    (2014) Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 1–17. doi: 10.3389/fpsyg.2014.00781
    https://doi.org/10.3389/fpsyg.2014.00781 [Google Scholar]
  16. Duyck, W. , Desmet, T. , Verbeke, L. P. C. , & Brysbaert, M.
    (2004) WordGen: A tool for word selection and nonword generation in Dutch, English, German, and French. Behavior Research Methods Instruments & Computers, 36(3), 488–499. doi: 10.3758/bf03195595
    https://doi.org/10.3758/bf03195595 [Google Scholar]
  17. Ferrand, L. , New, B. , Brysbaert, M. , Keuleers, E. , Bonin, P. , Méot, A. , … Pallier, C.
    (2010) The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42(2), 488–496. doi: 10.3758/BRM.42.2.488
    https://doi.org/10.3758/BRM.42.2.488 [Google Scholar]
  18. Frankish, C. , & Barnes, L.
    (2008) Lexical and sublexical processes in the perception of transposed-letter anagrams. The Quarterly Journal of Experimental Psychology, 61(3), 381–391. doi: 10.1080/17470210701664880
    https://doi.org/10.1080/17470210701664880 [Google Scholar]
  19. Gelman, A. , & Rubin, D. B.
    (1995) Avoiding model selection in Bayesian social research. Sociological Methodology, 25, 165–173. doi: 10.2307/271064
    https://doi.org/10.2307/271064 [Google Scholar]
  20. Gernsbacher, M. A.
    (1984) Resolving 20 years of inconsistent interactions between lexical familiarity and orthography, concreteness, and polysemy. Journal of Experimental Psychology: General, 113(2), 256–281. doi: 10.1037/0096‑3445.113.2.256
    https://doi.org/10.1037/0096-3445.113.2.256 [Google Scholar]
  21. Gigerenzer, G.
    (1998) Surrogates for theories. Theory and Psychology, 8, 195–204. doi: 10.1177/0959354398082006
    https://doi.org/10.1177/0959354398082006 [Google Scholar]
  22. Grainger, J. , & Whitney, C.
    (2004) Does the huamn mnid raed wrods as a wlohe?Trends in Cognitive Sciences, 8(2), 58–59. doi: 10.1016/j.tics.2003.11.006
    https://doi.org/10.1016/j.tics.2003.11.006 [Google Scholar]
  23. Grainger, J. , & Ziegler, J.
    (2011) A dual-route approach to orthographic processing. Frontiers in Psychology, 2, 1–13. doi: 10.3389/fpsyg.00054.
    https://doi.org/10.3389/fpsyg.00054 [Google Scholar]
  24. Keuleers, E. , & Brysbaert, M.
    (2011) Detecting inherent bias in lexical decision experiments with the LD1NN algorithm. The Mental Lexicon, 6(1), 34–52. doi: 10.1075/ml.6.1.02keu
    https://doi.org/10.1075/ml.6.1.02keu [Google Scholar]
  25. Keuleers, E. , Diependaele, K. , & Brysbaert, M.
    (2010) Practice effects in large-scale visual word recognition studies: A lexical decision study on 14,000 Dutch mono-and disyllabic words and nonwords. Frontiers in Psychology, 1, 1–15. doi: 10.3389/fpsyg.2010.00174
    https://doi.org/10.3389/fpsyg.2010.00174 [Google Scholar]
  26. Keuleers, E. , Lacey, P. , Rastle, K. , & Brysbaert, M.
    (2012) The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44(1), 287–304. doi: 10.3758/S13428‑011‑0118‑4
    https://doi.org/10.3758/S13428-011-0118-4 [Google Scholar]
  27. Kinoshita, S. , & Norris, D.
    (2013) Letter order is not coded by open bigrams. Journal of Memory and Language, 69(2), 135–150. doi: 10.1016/j.jml.2013.03.003
    https://doi.org/10.1016/j.jml.2013.03.003 [Google Scholar]
  28. Kruschke, J.
    (2014) Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. London: Academic Press.
    [Google Scholar]
  29. Loxton, D.
    (2015, May24th). History and Hyman’s Maxim [Blog post]. Retrieved fromwww.skeptic.com/insight/history-and-hymans-maxim-part-one/
  30. Medler, D. A. , & Binder, R. J.
    (2005) MCWord: An on-line orthographic database of the English language. Retrieved20.5.2015fromwww.neuro.mcw.edu/mcword/
  31. McClelland, J. L. , & Johnston, J. C.
    (1977) The role of familiar units in perception of words and nonwords. Attention, Perception, & Psychophysics, 22(3), 249–261. doi: 10.3758/BF03199687
    https://doi.org/10.3758/BF03199687 [Google Scholar]
  32. Morey, R. D. , & Rouder, J. N.
    (2014) Package “BayesFactor”. Retrieved9.8.2014, fromcran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
  33. New, B. , Ferrand, L. , Pallier, C. , & Brysbaert, M.
    (2006) Reexamining the word length effect in visual word recognition: New evidence from the English Lexicon Project. Psychonomic Bulletin & Review, 13(1), 45–52. doi: 10.3758/BF03193811
    https://doi.org/10.3758/BF03193811 [Google Scholar]
  34. Perea, M. , & Carreiras, M.
    (2008) Do orthotactics and phonology constrain the transposed-letter effect?Language and Cognitive Processes, 23(1), 69–92. doi: 10.1080/01690960701578146
    https://doi.org/10.1080/01690960701578146 [Google Scholar]
  35. R Core Team
    R Core Team (2013) R: A language environment for statistical computing [Computer software manual]. Vienna. Retrieved fromwww.R-project.org/
  36. Rayner, K. , Pollatsek, A. , Drieghe, D. , Slattery, T. J. , & Reichle, E. D.
    (2007) Tracking the mind during reading via eye movements: Comments on Kliegl, Nuthmann, and Engbert (2006). Journal of Experimental Psychology: General, 136(3), 520–529. doi: 10.1037/0096‑3445.136.3.520
    https://doi.org/10.1037/0096-3445.136.3.520 [Google Scholar]
  37. Rice, G. , & Robinson, D.
    (1975) The role of bigram frequency in the perception of words and nonwords. Memory & Cognition, 3(5), 513–518. doi: 10.3758/BF03197523
    https://doi.org/10.3758/BF03197523 [Google Scholar]
  38. Rouder, J. N. , Speckman, P. L. , Sun, D. C. , Morey, R. D. , & Iverson, G.
    (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. doi: 10.3758/Pbr.16.2.225
    https://doi.org/10.3758/Pbr.16.2.225 [Google Scholar]
  39. Rumelhart, D. E. , & Siple, P.
    (1974) Process of recognizing tachistoscopically presented words. Psychological Review, 81(2), 99–118. doi: 10.1037/h0036117
    https://doi.org/10.1037/h0036117 [Google Scholar]
  40. Schmalz, X.
    (2015, July17th). Hyman’s Maxim: The most important principle in observational sciences? [Blog post]. Retrieved fromxeniaschmalz.blogspot.de/2015/07/hymans-maxim-most-important-principle.html
  41. Schoonbaert, S. , & Grainger, J.
    (2004) Letter position coding in printed word perception: Effects of repeated and transposed letters. Language and Cognitive Processes, 19(3), 333–367. doi: 10.1080/01690960344000198
    https://doi.org/10.1080/01690960344000198 [Google Scholar]
  42. Simonsohn, U.
    (2015, September4th). The default Bayesian test is prejudiced against small effects [Blog post]. Retrieved fromdatacolada.org/2015/04/09/35-the-default-bayesian-test-is-prejudiced-against-small-effects/
  43. van Heuven, W. , Mandera, P. , Keuleers, E. , & Brysbaert, M.
    (2014) SUBTLEX-UK: A new and improved word frequency database for British English. The Quarterly Journal of Experimental Psychology, 67(6), 1176–1190. doi: 10.1080/17470218.2013.850521
    https://doi.org/10.1080/17470218.2013.850521 [Google Scholar]
  44. Vitevitch, M. S. , & Luce, P. A.
    (2016) Phonological neighborhood effects in spoken word perception and production. Annual Review of Linguistics, 2, 75–94. doi: 10.1146/annurev‑linguistics‑030514‑124832
    https://doi.org/10.1146/annurev-linguistics-030514-124832 [Google Scholar]
  45. Weekes, B.
    (1997) Differential Effects of Number of Letters on Word and Nonword Naming Latency. The Quarterly Journal of Experimental Psychology, 50A(2), 439–456. doi: 10.1080/713755710
    https://doi.org/10.1080/713755710 [Google Scholar]
  46. Whitney, C.
    (2001) How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. Psychonomic Bulletin & Review, 8(2), 221–243. doi: 10.3758/BF03196158
    https://doi.org/10.3758/BF03196158 [Google Scholar]
  47. (2008) Comparison of the SERIOL and SOLAR theories of letter-position encoding. Brain and Language, 107(2), 170–178. doi: 10.1016/j.bandl.2007.08.002
    https://doi.org/10.1016/j.bandl.2007.08.002 [Google Scholar]
  48. Yarkoni, T. , Balota, D. , & Yap, M.
    (2008) Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15(5), 971–979. doi: 10.3738/Pbr.15.5.971
    https://doi.org/10.3738/Pbr.15.5.971 [Google Scholar]
/content/journals/10.1075/ml.17009.sch
Loading
/content/journals/10.1075/ml.17009.sch
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): null hypothesis; reading; research methods
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error