1887
Volume 13, Issue 2
  • ISSN 1871-1340
  • E-ISSN: 1871-1375

Abstract

Abstract

This methodological study provides a step-by-step introduction to a computational implementation of word and paradigm morphology using linear mappings between vector spaces for form and meaning. Taking as starting point the linear regression model, the main concepts underlying linear mappings are introduced and illustrated with R code. It is then shown how vector spaces can be set up for Latin verb conjugations, using 672 inflected variants of two verbs each from the four main conjugation classes. It turns out that mappings from form to meaning (comprehension), and from meaning to form (production) can be carried out loss-free. This study concludes with a demonstration that when the graph of triphones, the units that underlie the form space, is mapped onto a 2-dimensional space with a self-organising algorithm from physics (graphopt), morphological functions show topological clustering, even though morphemic units do not play any role whatsoever in the model. It follows, first, that evidence for morphemes emerging from experimental studies using, for instance, fMRI, to localize morphemes in the brain, does not guarantee the existence of morphemes in the brain, and second, that potential topological organization of morphological form in the cortex may depend to a high degree on the morphological system of a language.

This work is licensed under a Creative Commons Attribution 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/ml.18010.baa
2019-01-10
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ml.18010.baa.html?itemId=/content/journals/10.1075/ml.18010.baa&mimeType=html&fmt=ahah

References

  1. Ackerman, F., Blevins, J. P., and Malouf, R.
    (2009) Parts and wholes: Implicative patterns in inflectional paradigms. InBlevins, J. P. and Blevins, J., editors, Analogy in grammar: Form and acquisition, pages54–82. Oxford Univ. Press Oxford, UK. 10.1093/acprof:oso/9780199547548.003.0003
    https://doi.org/10.1093/acprof:oso/9780199547548.003.0003 [Google Scholar]
  2. Arnold, D., Tomaschek, F., Lopez, F., Sering, T., and Baayen, R. H.
    (2017) Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit. PLOS ONE, 12(4):e0174623. 10.1371/journal.pone.0174623
    https://doi.org/10.1371/journal.pone.0174623 [Google Scholar]
  3. Aronoff, M. and Fudeman, K.
    (2011) What is morphology?, volume8. John Wiley & Sons.
    [Google Scholar]
  4. Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., and Blevins, J.
    (2018) The discriminative lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de)composition but in linear discriminative learning. Complexity, accepted for publication.
    [Google Scholar]
  5. Beard, R.
    (1977) On the extent and nature of irregularity in the lexicon. Lingua, 42:305–341. 10.1016/0024‑3841(77)90102‑4
    https://doi.org/10.1016/0024-3841(77)90102-4 [Google Scholar]
  6. Bertram, R., Tønnessen, F. E., Strömqvist, S., Hyönä, J., and Niemi, P.
    (2015) Cascaded processing in written compound word production. Frontiers in human neuroscience, 9:207.
    [Google Scholar]
  7. Blevins, J. P.
    (2003) Stems and paradigms. Language, 79:737–767. 10.1353/lan.2003.0206
    https://doi.org/10.1353/lan.2003.0206 [Google Scholar]
  8. (2006) Word-based morphology. Journal of Linguistics, 42(03):531–573. 10.1017/S0022226706004191
    https://doi.org/10.1017/S0022226706004191 [Google Scholar]
  9. (2016) Word and paradigm morphology. Oxford University Press. 10.1093/acprof:oso/9780199593545.001.0001
    https://doi.org/10.1093/acprof:oso/9780199593545.001.0001 [Google Scholar]
  10. Booij, G.
    (2012) The grammar of words: An introduction to linguistic morphology. Oxford University Press.
    [Google Scholar]
  11. Booij, G. E.
    (2016) Construction morphology. InHippisley, A. and Stump, G., editors, The Cambridge Handbook of Morphology, pages424–448. Cambridge University Press, Cambridge. 10.1017/9781139814720.016
    https://doi.org/10.1017/9781139814720.016 [Google Scholar]
  12. Booij, G.
    (2018) The Construction of Words: Advances in Construction Morphology, volume4. Springer. 10.1007/978‑3‑319‑74394‑3
    https://doi.org/10.1007/978-3-319-74394-3 [Google Scholar]
  13. Bozic, M. and Marslen-Wilson, W.
    (2010) Neurocognitive contexts for morphological complexity: Dissociating inflection and derivation. Language and Linguistics Compass, 4(11):1063–1073. 10.1111/j.1749‑818X.2010.00254.x
    https://doi.org/10.1111/j.1749-818X.2010.00254.x [Google Scholar]
  14. Bozic, M., Tyler, L. K., Ives, D. T., Randall, B., and Marslen-Wilson, W. D.
    (2010) Bihemispheric foundations for human speech comprehension. Proceedings of the National Academy of Sciences, 107(40):17439–17444. 10.1073/pnas.1000531107
    https://doi.org/10.1073/pnas.1000531107 [Google Scholar]
  15. Brown, D. and Hippisley, A.
    (2012) Network morphology: A defaults-based theory of word structure, volume133. Cambridge University Press. 10.1017/CBO9780511794346
    https://doi.org/10.1017/CBO9780511794346 [Google Scholar]
  16. Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., and Munafò, M. R.
    (2013) Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5): 365–376. 10.1038/nrn3475
    https://doi.org/10.1038/nrn3475 [Google Scholar]
  17. Butz, M. V. and Kutter, E. F.
    (2016) How the mind comes into being: Introducing cognitive science from a functional and computational perspective. Oxford University Press.
    [Google Scholar]
  18. Cahill, L. and Gazdar, G.
    (1999) German noun inflection. Journal of Linguistics, 35(1):1–42. 10.1017/S0022226798007294
    https://doi.org/10.1017/S0022226798007294 [Google Scholar]
  19. Chersi, F., Ferro, M., Pezzulo, G., and Pirrelli, V.
    (2014) Topological self-organization and prediction learning support both action and lexical chains in the brain. Topics in cognitive science, 6(3):476–491. 10.1111/tops.12094
    https://doi.org/10.1111/tops.12094 [Google Scholar]
  20. Cibelli, E. S., Leonard, M. K., Johnson, K., and Chang, E. F.
    (2015) The influence of lexical statistics on temporal lobe cortical dynamics during spoken word listening. Brain and language, 147:66–75. 10.1016/j.bandl.2015.05.005
    https://doi.org/10.1016/j.bandl.2015.05.005 [Google Scholar]
  21. Corbett, G. G. and Fraser, N. M.
    (1993) Network morphology: a datr account of russian nominal inflection. Journal of linguistics, 29(1):113–142. 10.1017/S0022226700000074
    https://doi.org/10.1017/S0022226700000074 [Google Scholar]
  22. Csardi, G. and Nepusz, T.
    (2006) The igraph software package for complex network research. Inter Journal, Complex Systems:1695.
    [Google Scholar]
  23. Dabrowska, E.
    (2001) Learning a morphological system without a default: the Polish genitive. Journal of child language, 28:545–574. 10.1017/S0305000901004767
    https://doi.org/10.1017/S0305000901004767 [Google Scholar]
  24. Divjak, D. and Milin, P.
    (2018) Language, learning and usage-based linguistics. Invited talk at the Philological Society, London, February9 2018.
    [Google Scholar]
  25. Erelt, M.
    editor (2003) Estonian language. Estonian academy publishers, Tallinn.
    [Google Scholar]
  26. Ernestus, M., Baayen, R. H., and Schreuder, R.
    (2002) The recognition of reduced word forms. Brain and Language, 81:162–173. 10.1006/brln.2001.2514
    https://doi.org/10.1006/brln.2001.2514 [Google Scholar]
  27. Ferro, M., Marzi, C., and Pirrelli, V.
    (2011) A self-organizing model of word storage and processing: implications for morphology learning. Lingue e linguaggio, 10(2):209–226.
    [Google Scholar]
  28. Firth, J. R.
    (1968) Selected papers of J R Firth, 1952–59. Indiana University Press.
    [Google Scholar]
  29. Gahl, S.
    (2008) Time and thyme are not homophones: The effect of lemma frequency on word durations in spontaneous speech. Language, 84(3):474–496. 10.1353/lan.0.0035
    https://doi.org/10.1353/lan.0.0035 [Google Scholar]
  30. Hay, J. B.
    (2002) From speech perception to morphology: Affix-ordering revisited. Language, 78:527–555. 10.1353/lan.2002.0159
    https://doi.org/10.1353/lan.2002.0159 [Google Scholar]
  31. Hay, J. B. and Baayen, R. H.
    (2003) Phonotactics, parsing and productivity. Italian Journal of Linguistics, 1:99–130.
    [Google Scholar]
  32. Hickok, G.
    (2014) The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience, 29(1):2–20. 10.1080/01690965.2013.834370
    https://doi.org/10.1080/01690965.2013.834370 [Google Scholar]
  33. Hockett, C.
    (1960) The origin of speech. Scientific American, 203:89–97. 10.1038/scientificamerican0960‑88
    https://doi.org/10.1038/scientificamerican0960-88 [Google Scholar]
  34. Jackendoff, R.
    (1990) Semantic Structures. MIT Press, Cambridge.
    [Google Scholar]
  35. Johnson, K.
    (2004) Massive reduction in conversational American English. InSpontaneous speech: data and analysis. Proceedings of the 1st session of the 10th international symposium, pages29–54, Tokyo, Japan. The National International Institute for Japanese Language.
    [Google Scholar]
  36. Juola, P.
    (2000) Double dissociations and neurophysiological expectations. Brain and cognition, 43(1–3):257–262.
    [Google Scholar]
  37. Karlsson, F.
    (1986) Frequency considerations in morphology. STUF-Language Typology and Universals, 39(1–4):19–28.
    [Google Scholar]
  38. Kaye, R. and Wilson, R.
    (1998) Linear Algebra. Oxford University Press.
    [Google Scholar]
  39. Kemps, R., Ernestus, M., Schreuder, R., and Baayen, R. H.
    (2004) Processing reduced word forms: The suffix restoration effect. Brain and Language, 19:117–127. 10.1016/S0093‑934X(03)00425‑5
    https://doi.org/10.1016/S0093-934X(03)00425-5 [Google Scholar]
  40. Landauer, T. and Dumais, S.
    (1997) A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104(2):211–240. 10.1037/0033‑295X.104.2.211
    https://doi.org/10.1037/0033-295X.104.2.211 [Google Scholar]
  41. Lardier, D.
    (2014) Words and their parts. InFasold, R. W. and Connor-Linton, J., editors, An introduction to language and linguistics. Cambridge University Press, Cambridge.
    [Google Scholar]
  42. Levelt, W., Roelofs, A., and Meyer, A. S.
    (1999) A theory of lexical access in speech production. Behavioral and Brain Sciences, 22:1–38. 10.1017/S0140525X99001776
    https://doi.org/10.1017/S0140525X99001776 [Google Scholar]
  43. Lieber, R.
    (1980) On the Organization of the Lexicon. PhD thesis, MIT, Cambridge.
  44. Loo, K., Jaervikivi, J., and Baayen, R.
    (2018a) Whole-word frequency and inflectional paradigm size facilitate estonian case-inflected noun processing. Cognition, 175:20–25. 10.1016/j.cognition.2018.02.002
    https://doi.org/10.1016/j.cognition.2018.02.002 [Google Scholar]
  45. Loo, K., Jaervikivi, J., Tomaschek, F., Tucker, B., and Baayen, R.
    (2018b) Production of estonian case-inflected nouns shows whole-word frequency and paradigmatic effects. Morphology, 1(28):71–97. 10.1007/s11525‑017‑9318‑7
    https://doi.org/10.1007/s11525-017-9318-7 [Google Scholar]
  46. Marantz, A.
    (2013) No escape from morphemes in morphological processing. Language and Cognitive Processes, 28(7):905–916. 10.1080/01690965.2013.779385
    https://doi.org/10.1080/01690965.2013.779385 [Google Scholar]
  47. Marelli, M. and Baroni, M.
    (2015) Affixation in semantic space: Modeling morpheme meanings with compositional distributional semantics. Psychological Review, 122(3):485. 10.1037/a0039267
    https://doi.org/10.1037/a0039267 [Google Scholar]
  48. Matthews, P. H.
    (1974) Morphology. An Introduction to the Theory of Word Structure. Cambridge University Press, Cambridge.
    [Google Scholar]
  49. (1991) Morphology. An Introduction to the Theory of Word Structure. Cambridge University Press, Cambridge.
    [Google Scholar]
  50. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.
    (2013) Distributed representations of words and phrases and their compositionality. InAdvances in neural information processing systems, pages3111–3119.
    [Google Scholar]
  51. Open Science Collaboration
    Open Science Collaboration (2015) Estimating the reproducibility of psychological science. Science, 349(6251):aac4716. 10.1126/science.aac4716
    https://doi.org/10.1126/science.aac4716 [Google Scholar]
  52. Pham, H. and Baayen, R. H.
    (2015) Vietnamese compounds show an anti-frequency effect in visual lexical decision. Language, Cognition, and Neuroscience, 30(9):1077–1095. 10.1080/23273798.2015.1054844
    https://doi.org/10.1080/23273798.2015.1054844 [Google Scholar]
  53. Pirrelli, V., Ferro, M., and Marzi, C.
    (2015) Computational complexity of abstractive morphology. InBearman, M., Brown, D., and Corbett, G. G., editors, Understanding and measuring morphological complexity, pages141–166. Oxford University Press Oxford. 10.1093/acprof:oso/9780198723769.003.0008
    https://doi.org/10.1093/acprof:oso/9780198723769.003.0008 [Google Scholar]
  54. Plag, I.
    (2003) Word-formation in English. Cambridge University Press, Cambridge. 10.1017/CBO9780511841323
    https://doi.org/10.1017/CBO9780511841323 [Google Scholar]
  55. Plag, I., Homann, J., and Kunter, G.
    (2017) Homophony and morphology: The acoustics of word-final S in English. Journal of Linguistics, 53(1):181–216. 10.1017/S0022226715000183
    https://doi.org/10.1017/S0022226715000183 [Google Scholar]
  56. R Core Team
    R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    [Google Scholar]
  57. Seidenberg, M.
    (1987) Sublexical structures in visual word recognition: Access units or orthographic redundancy. InColtheart, M., editor, Attention and Performance XII, pages245–264. Lawrence Erlbaum Associates, Hove.
    [Google Scholar]
  58. Shafaei Bajestan, E. and Baayen, R. H.
    (2018) Wide learning for auditory comprehension. InInterspeech. 10.21437/Interspeech.2018‑2420
    https://doi.org/10.21437/Interspeech.2018-2420 [Google Scholar]
  59. Shaoul, C. and Westbury, C.
    (2010) Exploring lexical co-occurrence space using hidex. Behavior Research Methods, 42(2):393–413. 10.3758/BRM.42.2.393
    https://doi.org/10.3758/BRM.42.2.393 [Google Scholar]
  60. Spencer, A.
    (1991) Morphological Theory: An Introduction to Word Structure in Generative Grammar. Cambridge University Press, Cambridge.
    [Google Scholar]
  61. Stump, G.
    (2001) Inflectional Morphology: A Theory of Paradigm Structure. Cambridge University Press. 10.1017/CBO9780511486333
    https://doi.org/10.1017/CBO9780511486333 [Google Scholar]
  62. Taft, M.
    (1994) Interactive-activation as a framework for understanding morphological processing. LCP, 9(3):271–294.
    [Google Scholar]
  63. Weaver, W.
    (1955) Translation. InLocke, W. N. and Booth, A. D., editors, Machine Translation of Languages: Fourteen Essays, pages15–23. MIT Press, Cambridge.
    [Google Scholar]
  64. Weingarten, R., Nottbusch, G., and Will, U.
    (2004) Morphemes, syllables and graphemes in written word production. InPechmann, T. and Habel, C., editors, Multidisciplinary approaches to speech production, pages529–572. Mouton de Gruyter, Berlin. 10.1515/9783110894028.529
    https://doi.org/10.1515/9783110894028.529 [Google Scholar]
  65. Zwitserlood, P.
    (2018) Processing and representation of morphological complexity in native language comprehension and production. InBooij, G. E., editor, The construction of words. Advances in construction morphology, pages583–602. Springer.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/ml.18010.baa
Loading
/content/journals/10.1075/ml.18010.baa
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error