Volume 16, Issue 1
  • ISSN 1871-1340
  • E-ISSN: 1871-1375
Buy:$35.00 + Taxes



A multitude of studies show the relevance of both inflectional paradigms (word form frequency distributions, i.e., inflectional entropy) and inflectional classes (whole class frequency distributions) for visual lexical processing. Their interplay has also been proven significant, measured as the difference between paradigm and class frequency distributions (relative entropy). Relative entropy effects have now been recorded in nouns, verbs, adjectives, and prepositional phrases. However, all of these studies used visual stimuli – either written words or picture-naming tasks. The goal of our study is to test whether the effects of relative entropy can also be captured in the auditory modality. Forty young native speakers of Romanian (60% female) living in Serbia as part of the Romanian ethnic minority participated in an auditory lexical decision task. Stimuli were 168 Romanian verbs from two inflectional classes. Verbs were presented in four forms: present and imperfect 1st person singular, present 3rd person plural, and imperfect 2nd person plural. The results show that relative entropy influences both response accuracy and response latency. We discuss alternative operationalizations of relative entropy and how they can help us test hypotheses about the structure of the mental lexicon.


Article metrics loading...

Loading full text...

Full text loading...


  1. Baayen, R. H., Feldman, L. B., & Schreuder, R.
    (2006) Morphological influences on the recognition of monosyllabic monomorphemic words. Journal of Memory and Language, 55(2), 290–313. 10.1016/j.jml.2006.03.008
    https://doi.org/10.1016/j.jml.2006.03.008 [Google Scholar]
  2. Baayen, R. H., & Milin, P.
    (2010) Analyzing reaction times. International Journal of Psychological Research, 3(2), 12–28. 10.21500/20112084.807
    https://doi.org/10.21500/20112084.807 [Google Scholar]
  3. Baayen, R. H., Milin, P., Filipović Đurđević, D., Hendrix, P., & Marelli, M.
    (2011) An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118(3), 438. 10.1037/a0023851
    https://doi.org/10.1037/a0023851 [Google Scholar]
  4. Baayen, R. H., & Moscoso del Prado Martín, F.
    (2005) Semantic density and past-tense formation in three Germanic languages. Language, 81(3), 666–698. 10.1353/lan.2005.0112
    https://doi.org/10.1353/lan.2005.0112 [Google Scholar]
  5. Bertram, R., Laine, M., Baayen, R. H., Schreuder, R., & Hyönä, J.
    (2000) Affixal homonymy triggers full-form storage, even with inflected words, even in a morphologically rich language. Cognition, 74(2), B13–B25. 10.1016/S0010‑0277(99)00068‑2
    https://doi.org/10.1016/S0010-0277(99)00068-2 [Google Scholar]
  6. Blevins, J. P.
    (2003) Stems and paradigms. Language, 79(4), 737–767. 10.1353/lan.2003.0206
    https://doi.org/10.1353/lan.2003.0206 [Google Scholar]
  7. Box, G. E., & Cox, D. R.
    (1964) An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26, 211–252. 10.1111/j.2517‑6161.1964.tb00553.x
    https://doi.org/10.1111/j.2517-6161.1964.tb00553.x [Google Scholar]
  8. Colé, P., Beauvillain, C., & Segui, J.
    (1989) On the representation and processing of prefixed and suffixed derived words: A differential frequency effect. Journal of Memory and Language, 28(1), 1–13. 10.1016/0749‑596X(89)90025‑9
    https://doi.org/10.1016/0749-596X(89)90025-9 [Google Scholar]
  9. Ek, U., Fellenius, K., & Jacobson, L.
    (2003) Reading acquisition, cognitive and visual development, and self-esteem in four children with cerebral visual impairment. Journal of Visual Impairment & Blindness, 97(12), 741–754. 10.1177/0145482X0309701202
    https://doi.org/10.1177/0145482X0309701202 [Google Scholar]
  10. Ernestus, M., & Cutler, A.
    (2015) BALDEY: A database of auditory lexical decisions. The Quarterly Journal of Experimental Psychology, 68(8), 1469–1488. 10.1080/17470218.2014.984730
    https://doi.org/10.1080/17470218.2014.984730 [Google Scholar]
  11. Ernestus, M., & Warner, N.
    (2011) An introduction to reduced pronunciation variants. Journal of Phonetics, 39(SI), 253–260. 10.1016/S0095‑4470(11)00055‑6
    https://doi.org/10.1016/S0095-4470(11)00055-6 [Google Scholar]
  12. Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., Dufau, S., Mathôt, S., & Grainger, J.
    (2018) MEGALEX: A megastudy of visual and auditory word recognition. Behavior Research Methods, 50(3), 1285–1307. 10.3758/s13428‑017‑0943‑1
    https://doi.org/10.3758/s13428-017-0943-1 [Google Scholar]
  13. Filipović Đurđević, D., & Gatarić, I.
    (2018) Simultaneous effects of inflectional paradigms and classes in processing of Serbian verbs. Psihologija, 51(3), 259–288. 10.2298/PSI170811015F
    https://doi.org/10.2298/PSI170811015F [Google Scholar]
  14. Filipović Đurđević, D., & Milin, P.
    (2019) Information and learning in processing adjective inflection. Cortex, 116, 209–227. 10.1016/j.cortex.2018.07.020
    https://doi.org/10.1016/j.cortex.2018.07.020 [Google Scholar]
  15. Goh, W. D., Yap, M. J., Lau, M. C., Ng, M. M., & Tan, L.-C.
    (2016) Semantic richness effects in spoken word recognition: A lexical decision and semantic categorization megastudy. Frontiers in Psychology, 7, 976. 10.3389/fpsyg.2016.00976
    https://doi.org/10.3389/fpsyg.2016.00976 [Google Scholar]
  16. Goldinger, S. D.
    (1996) Auditory lexical decision. Language and Cognitive Processes, 11(6), 559–568. 10.1080/016909696386944
    https://doi.org/10.1080/016909696386944 [Google Scholar]
  17. Gönczöl, R.
    (2007) Romanian: An essential grammar. London: Routledge. 10.4324/9780203432310
    https://doi.org/10.4324/9780203432310 [Google Scholar]
  18. Hay, J. B., & Baayen, R. H.
    (2005) Shifting paradigms: Gradient structure in morphology. Trends in Cognitive Sciences, 9(7), 342–348. 10.1016/j.tics.2005.04.002
    https://doi.org/10.1016/j.tics.2005.04.002 [Google Scholar]
  19. Hendrix, P., Bolger, P., & Baayen, H.
    (2017) Distinct ERP signatures of word frequency, phrase frequency, and prototypicality in speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(1), 128.
    [Google Scholar]
  20. Hockett, C. F.
    (1954) Two models of grammatical description. Word, 10(2–3), 210–234. 10.1080/00437956.1954.11659524
    https://doi.org/10.1080/00437956.1954.11659524 [Google Scholar]
  21. Kemps, R., Ernestus, M., Schreuder, R., & Baayen, H.
    (2004) Processing reduced word forms: The suffix restoration effect. Brain and Language, 90(1–3), 117–127. 10.1016/S0093‑934X(03)00425‑5
    https://doi.org/10.1016/S0093-934X(03)00425-5 [Google Scholar]
  22. Keuleers, E., & Balota, D. A.
    (2015) Megastudies, crowdsourcing, and large datasets in psycholinguistics: An overview of recent developments. The Quarterly Journal of Experimental Psychology, 68(8), 1457–1468. 10.1080/17470218.2015.1051065
    https://doi.org/10.1080/17470218.2015.1051065 [Google Scholar]
  23. Kostić, A., Marković, T., & Baucal, A.
    (2003) Inflectional morphology and word meaning: Orthogonal or co-implicative cognitive domains?InR. H. Baayen & R. Schreuder (Eds.), Morphological structure in language processing (pp.1–44). Walter de Gruyter, Berlin. 10.1515/9783110910186.1
    https://doi.org/10.1515/9783110910186.1 [Google Scholar]
  24. Lagrou, E., Hartsuiker, R. J., & Duyck, W.
    (2011) Knowledge of a second language influences auditory word recognition in the native language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(4), 952.
    [Google Scholar]
  25. Lindblom, B.
    (1990) Explaining phonetic variation: A sketch of the H&H theory. InSpeech production and speech modelling (pp.403–439). Springer. 10.1007/978‑94‑009‑2037‑8_16
    https://doi.org/10.1007/978-94-009-2037-8_16 [Google Scholar]
  26. Lindgren, S.-A., & Laine, M.
    (2011) Multilingual dyslexia in university students: Reading and writing patterns in three languages. Clinical Linguistics & Phonetics, 25(9), 753–766. 10.3109/02699206.2011.562594
    https://doi.org/10.3109/02699206.2011.562594 [Google Scholar]
  27. Lorentzen, P., Nenadić, F., Kelley, M. C., & Tucker, B. V.
    (2019) Massive auditory lexical decision: Investigating performance in noisy environments. Proceedings of the 11th International Conference on the Mental Lexicon, 1–4. doi:  10.7939/r3‑hrnv‑sn79
    https://doi.org/10.7939/r3-hrnv-sn79 [Google Scholar]
  28. Magnuson, J. S., Mirman, D., & Harris, H. D.
    (2012) Computational models of spoken word recognition. InM. Spivey, M. Joanisse, & KenMcRae (Eds.), The Cambridge Handbook of Psycholinguistics (pp.76–103). Cambridge University Press Cambridge, UK. 10.1017/CBO9781139029377.006
    https://doi.org/10.1017/CBO9781139029377.006 [Google Scholar]
  29. Mandera, P., Keuleers, E., & Brysbaert, M.
    (2020) Recognition times for 62 thousand English words: Data from the English Crowdsourcing Project. Behavior Research Methods, 52, 741–760. 10.3758/s13428‑019‑01272‑8
    https://doi.org/10.3758/s13428-019-01272-8 [Google Scholar]
  30. Milin, P., Filipović Ðurđević, D., & Moscoso del Prado Martín, F.
    (2009) The simultaneous effects of inflectional paradigms and classes on lexical recognition: Evidence from Serbian. Journal of Memory and Language, 60(1), 50–64. 10.1016/j.jml.2008.08.007
    https://doi.org/10.1016/j.jml.2008.08.007 [Google Scholar]
  31. Morris, J., Porter, J. H., Grainger, J., & Holcomb, P. J.
    (2011) Effects of lexical status and morphological complexity in masked priming: An ERP study. Language and Cognitive Processes, 26(4–6), 558–599. 10.1080/01690965.2010.495482
    https://doi.org/10.1080/01690965.2010.495482 [Google Scholar]
  32. Moscoso del Prado Martín, F., Kostić, A., & Baayen, R. H.
    (2004) Putting the bits together: An information theoretical perspective on morphological processing. Cognition, 94(1), 1–18. 10.1016/j.cognition.2003.10.015
    https://doi.org/10.1016/j.cognition.2003.10.015 [Google Scholar]
  33. Norris, D., & McQueen, J. M.
    (2008) Shortlist B: A Bayesian model of continuous speech recognition. Psychological Review, 115(2), 357. 10.1037/0033‑295X.115.2.357
    https://doi.org/10.1037/0033-295X.115.2.357 [Google Scholar]
  34. Norris, D., McQueen, J. M., & Cutler, A.
    (2000) Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299–325. 10.1017/S0140525X00003241
    https://doi.org/10.1017/S0140525X00003241 [Google Scholar]
  35. Podlubny, R. G., Nearey, T. M., Kondrak, G., & Tucker, B. V.
    (2018) Assessing the importance of several acoustic properties to the perception of spontaneous speech. The Journal of the Acoustical Society of America, 143(4), 2255–2268. 10.1121/1.5031123
    https://doi.org/10.1121/1.5031123 [Google Scholar]
  36. R Core Team
    R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
    [Google Scholar]
  37. Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J.
    (2006) Eye movements as reflections of comprehension processes in reading. Scientific Studies of Reading, 10(3), 241–255. 10.1207/s1532799xssr1003_3
    https://doi.org/10.1207/s1532799xssr1003_3 [Google Scholar]
  38. Schneider, W., Eschman, A., & Zuccolotto, A.
    (2002) E-Prime: User’s guide. Psychology Software Incorporated.
    [Google Scholar]
  39. Shannon, C. E.
    (1948) A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. 10.1002/j.1538‑7305.1948.tb01338.x
    https://doi.org/10.1002/j.1538-7305.1948.tb01338.x [Google Scholar]
  40. Taft, M.
    (1979) Recognition of affixed words and the word frequency effect. Memory & Cognition, 7(4), 263–272. 10.3758/BF03197599
    https://doi.org/10.3758/BF03197599 [Google Scholar]
  41. Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M.
    (2019) The massive auditory lexical decision (MALD) database. Behavior Research Methods, 51(3), 1187–1204. 10.3758/s13428‑018‑1056‑1
    https://doi.org/10.3758/s13428-018-1056-1 [Google Scholar]
  42. Tufiş, D., Ion, R., Ceauşu, A., & Ştefănescu, D.
    (2008) RACAI’s Linguistic Web Services. Proceedings of the 6th Language Resources and Evaluation Conference – LREC, 28–30.
    [Google Scholar]
  43. van Rij, J., Wieling, M., Baayen, R. H., & van Rijn, H.
    (2017) itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs.
    [Google Scholar]
  44. Vitevitch, M. S., & Luce, P. A.
    (1998) When words compete: Levels of processing in perception of spoken words. Psychological Science, 9(4), 325–329. 10.1111/1467‑9280.00064
    https://doi.org/10.1111/1467-9280.00064 [Google Scholar]
  45. Weber, A., & Scharenborg, O.
    (2012) Models of spoken-word recognition. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 387–401. 10.1002/wcs.1178
    https://doi.org/10.1002/wcs.1178 [Google Scholar]
  46. Westbury, C., Hollis, G., & Shaoul, C.
    (2007) LINGUA: The language-independent neighbourhood generator of the University of Alberta. The Mental Lexicon, 2(2), 271–284. 10.1075/ml.2.2.09wes
    https://doi.org/10.1075/ml.2.2.09wes [Google Scholar]
  47. Wood, S. N.
    (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73(1), 3–36. 10.1111/j.1467‑9868.2010.00749.x
    https://doi.org/10.1111/j.1467-9868.2010.00749.x [Google Scholar]
  48. Yates, M., Locker, L., & Simpson, G. B.
    (2004) The influence of phonological neighborhood on visual word perception. Psychonomic Bulletin & Review, 11(3), 452–457. 10.3758/BF03196594
    https://doi.org/10.3758/BF03196594 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error