Volume 16, Issue 1
  • ISSN 1871-1340
  • E-ISSN: 1871-1375
Buy:$35.00 + Taxes



The aim of the present study was to demonstrate the multisensory nature of vocabulary knowledge by using learning designed to encourage the simulation of sensorimotor experiences.

Forty participants were instructed to learn pseudowords together with arbitrary definitions, either by mentally experiencing (sensorimotor simulation) the definitions, or by mentally repeating them. A test phase consisting of three tasks was then administered: in a recognition task, participants had to recognize learned pseudowords among distractors. In a categorization task, they had to categorize pseudowords as representing either living or non-living items. Finally, in a sentence completion task, participants had to decide whether pseudowords were congruent with context sentences. As expected, the sensorimotor simulation condition induced better performances only in the categorization task and the sentence completion task. The results converge with data from the literature in demonstrating that knowledge emergence implies sensorimotor simulation and showing that vocabulary learning can benefit from encoding that encourages the simulation of sensorimotor experiences.


Article metrics loading...

Loading full text...

Full text loading...


  1. Anders, P., Bos, C., & Filip, D.
    (1984) The effect of semantic feature analysis of the reading comprehension of learning-disabled students. InJ. A. Niles, & L. A. Harris (Eds.), Changing perspectives on research in reading/language processing and instruction. National Reading Conference Yearbook (Vol.33) (pp.162–166). Rochester, NY: National Reading Conference.
    [Google Scholar]
  2. Barsalou, L. W.
    (1999) Perceptual symbol systems. Behavioral and Brain Sciences, 22(04). doi:  10.1017/S0140525X99002149
    https://doi.org/10.1017/S0140525X99002149 [Google Scholar]
  3. (2008) Grounded Cognition. Annual Review of Psychology, 59(1), 617–645. doi:  10.1146/annurev.psych.59.103006.093639
    https://doi.org/10.1146/annurev.psych.59.103006.093639 [Google Scholar]
  4. Barsalou, L. W., Kyle Simmons, W., Barbey, A. K., & Wilson, C. D.
    (2003) Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91. doi:  10.1016/S1364‑6613(02)00029‑3
    https://doi.org/10.1016/S1364-6613(02)00029-3 [Google Scholar]
  5. Boronat, C. B., Buxbaum, L. J., Coslett, H. B., Tang, K., Saffran, E. M., Kimberg, D. Y., & Detre, J. A.
    (2005) Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging. Cognitive Brain Research, 23(2–3), 361–373. doi:  10.1016/j.cogbrainres.2004.11.001
    https://doi.org/10.1016/j.cogbrainres.2004.11.001 [Google Scholar]
  6. Bos, C. S., Anders, P. L., Filip, D., & Jaffe, L. E.
    (1989) The Effects of an Interactive Instructional Strategy for Enhancing Reading Comprehension and Content Area Learning for Students with Learning Disabilities. Journal of Learning Disabilities, 22(6), 384–390. doi:  10.1177/002221948902200611
    https://doi.org/10.1177/002221948902200611 [Google Scholar]
  7. Brouillet, D.
    (2020) Enactive memory. Frontiers in psychology, 11. doi:  10.3389/fpsyg.2020.00114
    https://doi.org/10.3389/fpsyg.2020.00114 [Google Scholar]
  8. Brouillet, D., Vagnot, C., Milhau, A., Brunel, L., Briglia, J., Versace, R., & Rousset, S.
    (2015) Sensory–motor properties of past actions bias memory in a recognition task. Psychological Research, 79(4), 678–686. doi:  10.1007/s00426‑014‑0600‑6
    https://doi.org/10.1007/s00426-014-0600-6 [Google Scholar]
  9. Brouillet, T., Heurley, L., Martin, S., & Brouillet, D.
    (2010) The embodied cognition theory and the motor component of “yes” and “no” verbal responses. Acta Psychologica, 134(3), 310–317. doi:  10.1016/j.actpsy.2010.03.003
    https://doi.org/10.1016/j.actpsy.2010.03.003 [Google Scholar]
  10. Brouillet, D., & Versace, R.
    (2019) The nature of the traces and the dynamics of memory. Psychol. Behav. Sci, 8, 151–157. 10.11648/j.pbs.20190806.12
    https://doi.org/10.11648/j.pbs.20190806.12 [Google Scholar]
  11. Brunel, L., Lesourd, M., Labeye, E., & Versace, R.
    (2010) The sensory nature of knowledge: Sensory priming effects in semantic categorization. Quarterly Journal of Experimental Psychology, 63(5), 955–964. doi:  10.1080/17470210903134369
    https://doi.org/10.1080/17470210903134369 [Google Scholar]
  12. Caramazza, A., & Mahon, B. Z.
    (2006) The organisation of conceptual knowledge in the brain: The future’s past and some future directions. Cognitive Neuropsychology, 23(1), 13–38. doi:  10.1080/02643290542000021
    https://doi.org/10.1080/02643290542000021 [Google Scholar]
  13. Chao, L. L., & Martin, A.
    (2000) Representation of Manipulable Man-Made Objects in the Dorsal Stream. NeuroImage, 12(4), 478–484. doi:  10.1006/nimg.2000.0635
    https://doi.org/10.1006/nimg.2000.0635 [Google Scholar]
  14. Cohen, R. L.
    (1989) Memory for action events: The power of enactment. Educational Psychology Review, 1(1), 57–80. doi:  10.1007/BF01326550
    https://doi.org/10.1007/BF01326550 [Google Scholar]
  15. Collins, A. M., & Loftus, E. F.
    (1975) A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428. doi:  10.1037/0033‑295X.82.6.407
    https://doi.org/10.1037/0033-295X.82.6.407 [Google Scholar]
  16. Cook, S. W., Yip, T. K., & Goldin-Meadow, S.
    (2010) Gesturing makes memories that last. Journal of Memory and Language, 63(4), 465–475. doi:  10.1016/j.jml.2010.07.002
    https://doi.org/10.1016/j.jml.2010.07.002 [Google Scholar]
  17. Craik, F. I. M., & Lockhart, R. S.
    (1972) Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684. doi:  10.1016/S0022‑5371(72)80001‑X
    https://doi.org/10.1016/S0022-5371(72)80001-X [Google Scholar]
  18. Craik, F. I. M., & Tulving, E.
    (1975) Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104(3), 268–294. doi:  10.1037/0096‑3445.104.3.268
    https://doi.org/10.1037/0096-3445.104.3.268 [Google Scholar]
  19. Ellis, R., & Tucker, M.
    (2000) Micro-affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(4), 451–471. doi:  10.1348/000712600161934
    https://doi.org/10.1348/000712600161934 [Google Scholar]
  20. Farah, M. J., & McClelland, J. L.
    (1991) A computational model of semantic memory impairment: Modality specificity and emergent category specificity. Journal of Experimental Psychology: General, 120(4), 339–357. doi:  10.1037/0096‑3445.120.4.339
    https://doi.org/10.1037/0096-3445.120.4.339 [Google Scholar]
  21. Glenberg, A. M.
    (1997) What memory is for. Behavioral and Brain Sciences, 20(01). doi:  10.1017/S0140525X97000010
    https://doi.org/10.1017/S0140525X97000010 [Google Scholar]
  22. Hauk, O., Johnsrude, I., & Pulvermüller, F.
    (2004) Somatotopic Representation of Action Words in Human Motor and Premotor Cortex. Neuron, 41(2), 301–307. doi:  10.1016/S0896‑6273(03)00838‑9
    https://doi.org/10.1016/S0896-6273(03)00838-9 [Google Scholar]
  23. Hintzman, D. L.
    (1984) Minerva 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 16(2), 96–101. 10.3758/BF03202365
    https://doi.org/10.3758/BF03202365 [Google Scholar]
  24. (1986) “Schema abstraction” in a multiple-trace memory model. Psychol. Rev.93, 411–428. 10.1037/0033‑295X.93.4.411
    https://doi.org/10.1037/0033-295X.93.4.411 [Google Scholar]
  25. (1988) Judgments of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95(4), 528. 10.1037/0033‑295X.95.4.528
    https://doi.org/10.1037/0033-295X.95.4.528 [Google Scholar]
  26. Hommel, B.
    (2013) Ideomotor Action Control: On the Perceptual Grounding of Voluntary Actions and Agents. InW. Prinz, M. Beisert, & A. Herwig (Éd.), Action Science (p.112–136). doi:  10.7551/mitpress/9780262018555.003.0005
    https://doi.org/10.7551/mitpress/9780262018555.003.0005 [Google Scholar]
  27. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W.
    (2001) The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878. doi:  10.1017/S0140525X01000103
    https://doi.org/10.1017/S0140525X01000103 [Google Scholar]
  28. Horchak, O. V., Giger, J.-C., Cabral, M., & Pochwatko, G.
    (2014) From demonstration to theory in embodied language comprehension: A review. Cognitive Systems Research, 29–30, 66–85. doi:  10.1016/j.cogsys.2013.09.002
    https://doi.org/10.1016/j.cogsys.2013.09.002 [Google Scholar]
  29. James, W.
    (1890) The principles of psychology (Vol. 2). New York: Dover Publications.
    [Google Scholar]
  30. Jacoby, L. L., & Dallas, M.
    (1981) On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110(3), 306–340. doi:  10.1037/0096‑3445.110.3.306
    https://doi.org/10.1037/0096-3445.110.3.306 [Google Scholar]
  31. Kormi-nouri, R.
    (1995) The nature of memory for action events: An episodic integration view. European Journal of Cognitive Psychology, 7(4), 337–363. doi:  10.1080/09541449508403103
    https://doi.org/10.1080/09541449508403103 [Google Scholar]
  32. Kormi-Nouri, R., Nyberg, L., & Nilsson, L.-G.
    (1994) The effect of retrieval enactment on recall of subject-performed tasks and verbal tasks. Memory & Cognition, 22(6), 723–728. doi:  10.3758/BF03209257
    https://doi.org/10.3758/BF03209257 [Google Scholar]
  33. Martin, A., Haxby, J. V., Lalonde, F. O. M., Wiggs, C. L., & Ungerleider, L. G.
    (1995) Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of Action. Science, 270(5233), 102–105. doi:  10.1126/science.270.5233.102
    https://doi.org/10.1126/science.270.5233.102 [Google Scholar]
  34. Martin, Alex
    (2007) The Representation of Object Concepts in the Brain. Annual Review of Psychology, 58(1), 25–45. doi:  10.1146/annurev.psych.57.102904.190143
    https://doi.org/10.1146/annurev.psych.57.102904.190143 [Google Scholar]
  35. Martin, A., Ungerleider, L. G., & Haxby, J. V.
    (2000) Category specificity and the brain: The sensory/motor model of semantic representations of objects. InM. Gazzaniga (Ed.), The cognitive neurosciences (pp.839–847). Cambridge, MA: The MIT Press.
    [Google Scholar]
  36. Martin, Alex, Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V.
    (1996) Neural correlates of category-specific knowledge. Nature, 379(6566), 649–652. doi:  10.1038/379649a0
    https://doi.org/10.1038/379649a0 [Google Scholar]
  37. New, B., Pallier, C., Brysbaert, M., & Ferrand, L.
    (2004) Lexique 2 : A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36(3), 516–524. doi:  10.3758/BF03195598
    https://doi.org/10.3758/BF03195598 [Google Scholar]
  38. Nyberg, L., & Nilsson, L.-G.
    (1995) The role of enactment in implicit and explicit memory. Psychological Research, 57(3–4), 215–219. doi:  10.1007/BF00431282
    https://doi.org/10.1007/BF00431282 [Google Scholar]
  39. Ouellette, G., & Beers, A.
    (2010) A not-so-simple view of reading: how oral vocabulary and visual-word recognition complicate the story. Reading and Writing, 23(2), 189–208. doi:  10.1007/s11145‑008‑9159‑1
    https://doi.org/10.1007/s11145-008-9159-1 [Google Scholar]
  40. Ouellette, G. P.
    (2006) What’s meaning got to do with it: The role of vocabulary in word reading and reading comprehension. Journal of Educational Psychology, 98(3), 554–566. doi:  10.1037/0022‑0663.98.3.554
    https://doi.org/10.1037/0022-0663.98.3.554 [Google Scholar]
  41. Prinz, W.
    (1997) Perception and Action Planning. European Journal of Cognitive Psychology, 9(2), 129–154. doi:  10.1080/713752551
    https://doi.org/10.1080/713752551 [Google Scholar]
  42. Protopapas, A., Mouzaki, A., Sideridis, G. D., Kotsolakou, A., & Simos, P. G.
    (2013) The Role of Vocabulary in the Context of the Simple View of Reading. Reading & Writing Quarterly, 29(2), 168–202. doi:  10.1080/10573569.2013.758569
    https://doi.org/10.1080/10573569.2013.758569 [Google Scholar]
  43. Pulvermüller, F.
    (1999) Words in the brain’s language. The Behavioral and Brain Sciences, 22(2), 253–279; discussion 280–336. 10.1017/S0140525X9900182X
    https://doi.org/10.1017/S0140525X9900182X [Google Scholar]
  44. Pylyshyn, Z. W.
    (1984) Computation and cognition: Toward a foundation for cognitive science. Cambridge: The MIT Press.
    [Google Scholar]
  45. Rey, A. E., Riou, B., Vallet, G. T., & Versace, R.
    (2017) The automatic visual simulation of words: A memory reactivated mask slows down conceptual access. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 71(1), 14–22. doi:  10.1037/cep0000100
    https://doi.org/10.1037/cep0000100 [Google Scholar]
  46. Richardson-Klavehn, A., & Bjork, R. A.
    (1988) Measures of Memory. Annual Review of Psychology, 39(1), 475–543. doi:  10.1146/annurev.ps.39.020188.002355
    https://doi.org/10.1146/annurev.ps.39.020188.002355 [Google Scholar]
  47. Sadoski, M.
    (2005) A Dual Coding View of Vocabulary Learning. Reading & Writing Quarterly, 21(3), 221–238. doi:  10.1080/10573560590949359
    https://doi.org/10.1080/10573560590949359 [Google Scholar]
  48. (2018) Reading Comprehension is Embodied: Theoretical and Practical Considerations. Educational Psychology Review, 30(2), 331–349. doi:  10.1007/s10648‑017‑9412‑8
    https://doi.org/10.1007/s10648-017-9412-8 [Google Scholar]
  49. Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W.
    (2007) A common neural substrate for perceiving and knowing about color. Neuropsychologia, 45(12), 2802–2810. doi:  10.1016/j.neuropsychologia.2007.05.002
    https://doi.org/10.1016/j.neuropsychologia.2007.05.002 [Google Scholar]
  50. Slotnick, S. D.
    (2004) Visual Memory and Visual Perception Recruit Common Neural Substrates. Behavioral and Cognitive Neuroscience Reviews, 3(4), 207–221. doi:  10.1177/1534582304274070
    https://doi.org/10.1177/1534582304274070 [Google Scholar]
  51. Squire, L. R.
    (2004) Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177. doi:  10.1016/j.nlm.2004.06.005
    https://doi.org/10.1016/j.nlm.2004.06.005 [Google Scholar]
  52. Stanfield, R. A., & Zwaan, R. A.
    (2001) The Effect of Implied Orientation Derived from Verbal Context on Picture Recognition. Psychological Science, 12(2), 153–156. doi:  10.1111/1467‑9280.00326
    https://doi.org/10.1111/1467-9280.00326 [Google Scholar]
  53. Tannenbaum, K. R., Torgesen, J. K., & Wagner, R. K.
    (2006) Relationships Between Word Knowledge and Reading Comprehension in Third-Grade Children. Scientific Studies of Reading, 10(4), 381–398. doi:  10.1207/s1532799xssr1004_3
    https://doi.org/10.1207/s1532799xssr1004_3 [Google Scholar]
  54. Tulving, E.
    Organization of memory: Quo vadis? In: Gazzaniga MS, ed. The cognitive neurosciences. Cambridge: MIT Press 1995: 839–47.
    [Google Scholar]
  55. Versace, R., & Rose, M.
    (2007) The role of emotion in multimodal integration. Current Psychology Letters, Behaviour, Brain & Cognition, 21, 16–25. 10.4000/cpl.1402
    https://doi.org/10.4000/cpl.1402 [Google Scholar]
  56. Versace, R., Labeye, É., Badard, G., & Rose, M.
    (2009) The contents of long-term memory and the emergence of knowledge. European Journal of Cognitive Psychology, 21(4), 522–560. doi:  10.1080/09541440801951844
    https://doi.org/10.1080/09541440801951844 [Google Scholar]
  57. Versace, R., Vallet, G. T., Riou, B., Lesourd, M., Labeye, É., & Brunel, L.
    (2014) Act-In: An integrated view of memory mechanisms. Journal of Cognitive Psychology, 26(3), 280–306. doi:  10.1080/20445911.2014.892113
    https://doi.org/10.1080/20445911.2014.892113 [Google Scholar]
  58. Vingerhoets, G.
    (2008) Knowing about tools: Neural correlates of tool familiarity and experience. NeuroImage, 40(3), 1380–1391. doi:  10.1016/j.neuroimage.2007.12.058
    https://doi.org/10.1016/j.neuroimage.2007.12.058 [Google Scholar]
  59. Warrington, E. K., & Shallice, T.
    (1984) CATEGORY SPECIFIC SEMANTIC IMPAIRMENTS. Brain, 107(3), 829–853. doi:  10.1093/brain/107.3.829
    https://doi.org/10.1093/brain/107.3.829 [Google Scholar]
  60. Whittlesea, B. W. A.
    (1987) Preservation of specific experiences in the representation of general knowledge. Cognition13, 3–17.
    [Google Scholar]
  61. Witt, J. K., Kemmerer, D., Linkenauger, S. A., & Culham, J.
    (2010) A Functional Role for Motor Simulation in Identifying Tools. Psychological Science, 21(9), 1215–1219. doi:  10.1177/0956797610378307
    https://doi.org/10.1177/0956797610378307 [Google Scholar]
  62. Wu, L., & Barsalou, L. W.
    (2009) Perceptual simulation in conceptual combination: Evidence from property generation. Acta Psychologica, 132(2), 173–189. doi:  10.1016/j.actpsy.2009.02.002
    https://doi.org/10.1016/j.actpsy.2009.02.002 [Google Scholar]
  63. Zwaan, R. A., and Kaschak, M. P.
    (2008) “Language in the brain, body, and world,” inThe Cambridge Handbook of Situated Cognition, edsP. Robbins and M. Aydede (New York: Cambridge University Press), 368–381.
    [Google Scholar]
  64. Zwaan, R. A., & Madden, C. J.
    (2005) Embodied Sentence Comprehension. InD. Pecher & R. A. Zwaan (Éd.), Grounding Cognition (p.224–245). doi:  10.1017/CBO9780511499968.010
    https://doi.org/10.1017/CBO9780511499968.010 [Google Scholar]
  65. Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H.
    (2002) Language Comprehenders Mentally Represent the Shapes of Objects. Psychological Science, 13(2), 168–171. doi:  10.1111/1467‑9280.00430
    https://doi.org/10.1111/1467-9280.00430 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): adults; embodied cognition; sensorimotor simulation; vocabulary learning
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error