Volume 17, Issue 1
  • ISSN 1871-1340
  • E-ISSN: 1871-1375



In recent years, evidence has emerged that readers may have access to the meaning of complex words even in the early stages of processing, suggesting that phenomena previously attributed to morphological decomposition may actually emerge from an interplay between formal and semantic effects. The present study adds to this line of work by deploying a forward masked priming experiment with both L1 (Experiment 1) and L2 (Experiment 2) speakers of English. Following recent research trends, we view morphological processing as a gradient process emerging over time. In order to model this, we used a large within-item stimulus design combined with advanced statistical methods such as generalised mixed models (GAMM) and quantile regression (QGAM). L1 GAMM analyses only showed priming for true morpho-semantic relations (the identity ‘bull’, inflected ‘bulls’ and derived conditions ‘bullish’), with no priming observed in the case of other relations (the pseudo-complex ‘bully’ or the stem-embedded ‘bullet’ conditions). Furthermore, with respect to the time-course of effects, we found significant differences between conditions were present from very early on as revealed by the QGAM analyses. In contrast, L2 speakers showed significant facilitation across all five conditions compared to the baseline condition, including the stem-embedded condition, suggesting early L2 processing is only dependant on the form.

Available under the CC BY-NC 4.0 license.

Article metrics loading...

Loading full text...

Full text loading...



  1. Amenta, S., Crepaldi, D., & Marelli, M.
    (2020) Consistency measures individuate dissociating semantic modulations in priming paradigms: A new look on semantics in the processing of (complex) words. Quarterly Journal of Experimental Psychology, 1747021820927663. 10.1177/1747021820927663
    https://doi.org/10.1177/1747021820927663 [Google Scholar]
  2. Anderson, S. R.
    (1992) A-morphous morphology. Cambridge: Cambridge University Press. 10.1017/CBO9780511586262
    https://doi.org/10.1017/CBO9780511586262 [Google Scholar]
  3. Andrews, S. & Lo, S.
    (2013) Is morphological priming stronger for transparent than opaque words? it depends on individual differences in spelling and vocabulary. Journal of Memory and Language, 68 (3), 279–296. 10.1016/j.jml.2012.12.001
    https://doi.org/10.1016/j.jml.2012.12.001 [Google Scholar]
  4. Aronoff, M.
    (1994) Morphology by Itself: Stems and Inflectional Classes. Cambridge, Mass.: The MIT Press.
    [Google Scholar]
  5. Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P.
    (2019) The discriminative lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de) composition but in linear discriminative learning. Complexity, 2019. 10.1155/2019/4895891
    https://doi.org/10.1155/2019/4895891 [Google Scholar]
  6. Baayen, R. H., Davidson, D. J., & Bates, D.
    (2008) Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412. 10.1016/j.jml.2007.12.005
    https://doi.org/10.1016/j.jml.2007.12.005 [Google Scholar]
  7. Baayen, R. H., Milin, P., Filipovic Durdjevic, D., Hendrix, P., & Marelli, M.
    (2011) An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. Psychological Review, 118(3), 438–481. 10.1037/a0023851
    https://doi.org/10.1037/a0023851 [Google Scholar]
  8. Baayen, R. H., Piepenbrock, R., & Gulikers, L.
    (1995) The CELEX lexical database (CD-ROM). University of Pennsylvania, Philadelphia, PA: Linguistic Data Consortium.
    [Google Scholar]
  9. Baayen, R. H. & Smolka, E.
    (2020) Modeling morphological priming in german with naive discriminative learning. Frontiers in Communication, 5, 17. 10.3389/fcomm.2020.00017
    https://doi.org/10.3389/fcomm.2020.00017 [Google Scholar]
  10. Baayen, R. H., Vasishth, S., Bates, D., & Kliegl, R.
    (2017) The cave of shadows. addressing the human factor with generalized additive mixed models. Journal of Memory and Language, 56, 206–234. 10.1016/j.jml.2016.11.006
    https://doi.org/10.1016/j.jml.2016.11.006 [Google Scholar]
  11. Baayen, R. H., Wurm, L. H., & Aycock, J.
    (2007) Lexical dynamics for low-frequency complex words. a regression study across tasks and modalities. The Mental Lexicon, 2, 419–463. 10.1075/ml.2.3.06baa
    https://doi.org/10.1075/ml.2.3.06baa [Google Scholar]
  12. Beard, R.
    (1995) Lexeme-morpheme base morphology: A general theory of inflection and word formation. Albany, NY.: State University of New York Press.
    [Google Scholar]
  13. Bell, M. J. & Schäfer, M.
    (2016) Modelling semantic transparency. Morphology, 26 (2), 157–199. 10.1007/s11525‑016‑9286‑3
    https://doi.org/10.1007/s11525-016-9286-3 [Google Scholar]
  14. Beyersmann, E., Ziegler, J. C., Castles, A., Coltheart, M., Kezilas, Y., & Grainger, J.
    (2016) Morpho-orthographic segmentation without semantics. Psychonomic Bulletin & Review, 23(2), 533–539. 10.3758/s13423‑015‑0927‑z
    https://doi.org/10.3758/s13423-015-0927-z [Google Scholar]
  15. Blevins, J. P.
    (2016) Word and paradigm morphology. Oxford University Press. 10.1093/acprof:oso/9780199593545.001.0001
    https://doi.org/10.1093/acprof:oso/9780199593545.001.0001 [Google Scholar]
  16. Booij, G.
    (2010) Construction morphology. Language and linguistics compass, 4(7), 543–555. 10.1111/j.1749‑818X.2010.00213.x
    https://doi.org/10.1111/j.1749-818X.2010.00213.x [Google Scholar]
  17. Booij, G. E.
    (1996) Inherent versus contextual inflection and the split morphology hypothesis. InG. E. Booij & J. v. Marle (Eds.), Yearbook of Morphology 1995 (pp.1–16). Dordrecht: Kluwer Academic Publishers. 10.1007/978‑94‑017‑3716‑6_1
    https://doi.org/10.1007/978-94-017-3716-6_1 [Google Scholar]
  18. Clahsen, H. & Felser, C.
    (2006) Grammatical processing in language learners. Applied psycholinguistics, 27(1), 3. 10.1017/S0142716406060024
    https://doi.org/10.1017/S0142716406060024 [Google Scholar]
  19. Clahsen, H., Felser, C., Neubauer, K., Sato, M., & Silva, R.
    (2010) Morphological structure in native and nonnative language processing. Language Learning, 60(1), 21–43. 10.1111/j.1467‑9922.2009.00550.x
    https://doi.org/10.1111/j.1467-9922.2009.00550.x [Google Scholar]
  20. Coughlin, C. E. & Tremblay, A.
    (2015) Morphological decomposition in native and non-native french speakers. Bilingualism: Language and Cognition, 18(3), 524–542. 10.1017/S1366728914000200
    https://doi.org/10.1017/S1366728914000200 [Google Scholar]
  21. Crepaldi, D., Amenta, S., & Marelli, M.
    (2019) For a probabilistic and multidisciplinary approach to the investigation of morphological processing. Cortex, 116. 10.1016/j.cortex.2019.05.010
    https://doi.org/10.1016/j.cortex.2019.05.010 [Google Scholar]
  22. Davies, M.
    (2010) The Corpus of Contemporary American English as the first reliable monitor corpus of English. Literary and Linguistic Computing, 25(4), 447–464. 10.1093/llc/fqq018
    https://doi.org/10.1093/llc/fqq018 [Google Scholar]
  23. Davis, C. P., Libben, G., & Segalowitz, S. J.
    (2019) Compounding matters: Event-related potential evidence for early semantic access to compound words. Cognition, 184, 44–52. 10.1016/j.cognition.2018.12.006
    https://doi.org/10.1016/j.cognition.2018.12.006 [Google Scholar]
  24. De Jong, N. H., Schreuder, R., & Baayen, R. H.
    (2003) Morphological resonance in the mental lexicon. InR. H. Baayen & R. Schreuder (Eds.), Morphological structure in language processing (pp.65–88). Berlin: Mouton de Gruyter. 10.1515/9783110910186.65
    https://doi.org/10.1515/9783110910186.65 [Google Scholar]
  25. Diependaele, K., Duñabeitia, J. A., Morris, J., & Keuleers, E.
    (2011) Fast morphological effects in first and second language word recognition. Journal of Memory and Language, 64 (4), 344–358. 10.1016/j.jml.2011.01.003
    https://doi.org/10.1016/j.jml.2011.01.003 [Google Scholar]
  26. Diependaele, K., Sandra, D., & Grainger, J.
    (2009) Semantic transparency and masked morphological priming: The case of prefixed words. Memory & Cognition, 37(6), 895–908. 10.3758/MC.37.6.895
    https://doi.org/10.3758/MC.37.6.895 [Google Scholar]
  27. Diessel, H.
    (2019) The grammar network. Cambridge University Press. 10.1017/9781108671040
    https://doi.org/10.1017/9781108671040 [Google Scholar]
  28. Dijkstra, T. & van Heuven, W. J.
    (2018) Visual word recognition in multilinguals. The Oxford handbook of psycholinguistics, 118–143.
    [Google Scholar]
  29. Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R., & Goude, Y.
    (2020) Fast calibrated additive quantile regression. Journal of the American Statistical Association, 1–11.
    [Google Scholar]
  30. Feldman, L. B.
    (1994) Beyond orthography and phonology: Differences between inflections and derivations. Journal of Memory and Language, 33(4), 442–470. 10.1006/jmla.1994.1021
    https://doi.org/10.1006/jmla.1994.1021 [Google Scholar]
  31. Feldman, L. B. & Basnight-Brown, D. M.
    (2008) List context fosters semantic processing: Parallels between semantic and morphological facilitation when primes are forward masked. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34 (3), 680.
    [Google Scholar]
  32. Feldman, L. B., O’Connor, P. A., & Moscoso del Prado Martin, F.
    (2009) Early morphological processing is morpho-semantic and not simply morpho-orthographic: evidence from the masked priming paradigm. Psychonomic Bulletin & Review, 16 (4), 684–691. 10.3758/PBR.16.4.684
    https://doi.org/10.3758/PBR.16.4.684 [Google Scholar]
  33. Forster, K. & Davis, C.
    (1984) Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10 (4), 680–698. 10.1037/0278‑7393.10.4.680
    https://doi.org/10.1037/0278-7393.10.4.680 [Google Scholar]
  34. Giraudo, H. & Grainger, J.
    (2001) Priming complex words: Evidence for supralexical representation of morphology. Psychonomic Bulletin and Review, 8, 127–131. 10.3758/BF03196148
    https://doi.org/10.3758/BF03196148 [Google Scholar]
  35. Gonnerman, L. M., Seidenberg, M. S., & Andersen, E. S.
    (2007) Graded semantic and phonological similarity effects in priming: Evidence for a distributed connectionist approach to morphology. Journal of Experimental Psychology: General, 136 (2), 323. 10.1037/0096‑3445.136.2.323
    https://doi.org/10.1037/0096-3445.136.2.323 [Google Scholar]
  36. Günther, F., Petilli, M. A., & Marelli, M.
    (2020) Semantic transparency is not invisibility: A computational model of perceptually-grounded conceptual combination in word processing. Journal of Memory and Language, 112, 104104. 10.1016/j.jml.2020.104104
    https://doi.org/10.1016/j.jml.2020.104104 [Google Scholar]
  37. Hasenäcker, J., Beyersmann, E., & Schroeder, S.
    (2016) Masked morphological priming in German-speaking adults and children: Evidence from response time distributions. Frontiers in Psychology, 7, 929. 10.3389/fpsyg.2016.00929
    https://doi.org/10.3389/fpsyg.2016.00929 [Google Scholar]
  38. Hauk, O., Davis, M., Ford, M., Pulvermüller, F., & Marslen-Wilson, W.
    (2006) The time course of visual word recognition as revealed by linear regression analysis of ERP data. NeuroImage, 30, 1383–1400. 10.1016/j.neuroimage.2005.11.048
    https://doi.org/10.1016/j.neuroimage.2005.11.048 [Google Scholar]
  39. Heathcote, L., Nation, K., Castles, A., & Beyersmann, E.
    (2018) Do ‘blacheap’ and ‘subcheap’ both prime ‘cheap’? an investigation of morphemic status and position in early visual word processing. Quarterly Journal of Experimental Psychology, 71 (8), 1645–1654. 10.1080/17470218.2017.1362704
    https://doi.org/10.1080/17470218.2017.1362704 [Google Scholar]
  40. Hendrix, P. & Sun, C. C.
    (2020) The role of information theory for compound words in Mandarin Chinese and English. Cognition, 205, 104389. 10.1016/j.cognition.2020.104389
    https://doi.org/10.1016/j.cognition.2020.104389 [Google Scholar]
  41. Heyer, V. & Clahsen, H.
    (2015) Late bilinguals see a scan in scanner and in scandal: dissecting formal overlap from morphological priming in the processing of derived words. Bilingualism: Language and Cognition, 18(3), 543–550. 10.1017/S1366728914000662
    https://doi.org/10.1017/S1366728914000662 [Google Scholar]
  42. Jacob, G., Heyer, V., & Veríssimo, J.
    (2018) Aiming at the same target: A masked priming study directly comparing derivation and inflection in the second language. International Journal of Bilingualism, 22(6), 619–637. 10.1177/1367006916688333
    https://doi.org/10.1177/1367006916688333 [Google Scholar]
  43. Jared, D., Jouravlev, O., & Joanisse, M. F.
    (2017) The effect of semantic transparency on the processing of morphologically derived words: Evidence from decision latencies and event-related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(3), 422.
    [Google Scholar]
  44. Järvikivi, J. & Pyykkönen, P.
    (2011) Sub-and supralexical information in early phases of lexical access. Frontiers in Psychology, 2. 10.3389/fpsyg.2011.00282
    https://doi.org/10.3389/fpsyg.2011.00282 [Google Scholar]
  45. Jiang, N.
    (2000) Lexical representation and development in a second language. Applied linguistics, 21 (1), 47–77. 10.1093/applin/21.1.47
    https://doi.org/10.1093/applin/21.1.47 [Google Scholar]
  46. Kazanina, N.
    (2011) Decomposition of prefixed words in russian. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1371.
    [Google Scholar]
  47. Kuperman, V.
    (2013) Accentuate the positive: Semantic access in English compounds. Frontiers in Psychology, 4. 10.3389/fpsyg.2013.00203
    https://doi.org/10.3389/fpsyg.2013.00203 [Google Scholar]
  48. Kuperman, V., Schreuder, R., Bertram, R., & Baayen, R. H.
    (2009) Reading of multimorphemic Dutch compounds: Towards a multiple route model of lexical processing. Journal of Experimental Psychology: HPP, 35, 876–895.
    [Google Scholar]
  49. Lemhöfer, K., Dijkstra, T., Schriefers, H., Baayen, R. H., Grainger, J., & Zwitserlood, P.
    (2008) Native language influences on word recognition in a second language: A megastudy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34 (1), 12.
    [Google Scholar]
  50. Leminen, A., Smolka, E., Dunabeitia, J. A., & Pliatsikas, C.
    (2019) Morphological processing in the brain: The good (inflection), the bad (derivation) and the ugly (compounding). Cortex, 116, 4–44. 10.1016/j.cortex.2018.08.016
    https://doi.org/10.1016/j.cortex.2018.08.016 [Google Scholar]
  51. Libben, G.
    (2006) Why study compound processing? an overview of the issues. The representation and processing of compound words, 1–22.
    [Google Scholar]
  52. Longtin, C., Segui, J., & Hallé, P.
    (2003) Morphological priming without morphological relationship. Language and Cognitive Processes, 18(3), 313–334. 10.1080/01690960244000036
    https://doi.org/10.1080/01690960244000036 [Google Scholar]
  53. Lõo, K. & Järvikivi, J.
    (2019) Whole-word frequency effects in English masked priming: very little CORN in CORNER and CORNET. Proceedings of The 11th International Conference on the Mental Lexicon, 1, e072.
    [Google Scholar]
  54. Lõo, K., Järvikivi, J., & Baayen, R. H.
    (2018) Whole-word frequency and inflectional paradigm size facilitate Estonian case-inflected noun processing. Cognition, 175, 20–25. 10.1016/j.cognition.2018.02.002
    https://doi.org/10.1016/j.cognition.2018.02.002 [Google Scholar]
  55. Lõo, K., Järvikivi, J., Tomaschek, F., Tucker, B. V., & Baayen, R. H.
    (2018) Production of estonian case-inflected nouns shows whole-word frequency and paradigmatic effects. Morphology, 28, 71–97. 10.1007/s11525‑017‑9318‑7
    https://doi.org/10.1007/s11525-017-9318-7 [Google Scholar]
  56. Mandera, P., Keuleers, E., & Brysbaert, M.
    (2017) Explaining human performance in psycholinguistic tasks with models of semantic similarity based on prediction and counting: A review and empirical validation. Journal of Memory and Language, 92, 57–78. 10.1016/j.jml.2016.04.001
    https://doi.org/10.1016/j.jml.2016.04.001 [Google Scholar]
  57. Manelis, L. & Tharp, D. A.
    (1977) The processing of affixed words. Memory and Cognition, 5, 690–695. 10.3758/BF03197417
    https://doi.org/10.3758/BF03197417 [Google Scholar]
  58. Marelli, M. & Amenta, S.
    (2018) A database of orthography-semantics consistency (osc) estimates for 15,017 english words. Behavior Research Methods, 50 (4), 1482–1495. 10.3758/s13428‑018‑1017‑8
    https://doi.org/10.3758/s13428-018-1017-8 [Google Scholar]
  59. Marelli, M. & Baroni, M.
    (2015) Affixation in semantic space: Modeling morpheme meanings with compositional distributional semantics. Psychological Review, 122(3), 485. 10.1037/a0039267
    https://doi.org/10.1037/a0039267 [Google Scholar]
  60. Marzi, C., Blevins, J. P., Booij, G., & Pirrelli, V.
    (2020) Inflection at the morphology-syntax interface. Word Knowledge and Word Usage, 228. 10.1515/9783110440577‑007
    https://doi.org/10.1515/9783110440577-007 [Google Scholar]
  61. McDonald, J. L.
    (2006) Beyond the critical period: Processing-based explanations for poor grammaticality judgment performance by late second language learners. Journal of Memory and Language, 55(3), 381–401. 10.1016/j.jml.2006.06.006
    https://doi.org/10.1016/j.jml.2006.06.006 [Google Scholar]
  62. Morris, J., Frank, T., Grainger, J., & Holcomb, P. J.
    (2007) Semantic transparency and masked morphological priming: An ERP investigation. Psychophysiology, 44 (4), 506–521. 10.1111/j.1469‑8986.2007.00538.x
    https://doi.org/10.1111/j.1469-8986.2007.00538.x [Google Scholar]
  63. Moscoso del Prado Martín, F., Bertram, R., Häikiö, T., Schreuder, R., & Baayen, R. H.
    (2004) Morphological family size in a morphologically rich language: The case of Finnish compared to Dutch and Hebrew. Journal of Experimental Psychology: Learning, Memory and Cognition, 30, 1271–1278.
    [Google Scholar]
  64. Mulder, K., Dijkstra, T., & Baayen, R. H.
    (2015) Cross-language activation of morphological relatives in cognates: The role of orthographic overlap and task-related processing. Frontiers in Human Neuroscience, 9, 16. 10.3389/fnhum.2015.00016
    https://doi.org/10.3389/fnhum.2015.00016 [Google Scholar]
  65. Mulder, K., Dijkstra, T., Schreuder, R., & Baayen, R. H.
    (2014) Effects of primary and secondary morphological family size in monolingual and bilingual word processing. Journal of Memory and Language, 72, 59–84. 10.1016/j.jml.2013.12.004
    https://doi.org/10.1016/j.jml.2013.12.004 [Google Scholar]
  66. Norris, D. & Kinoshita, S.
    (2008) Perception as evidence accumulation and bayesian inference: Insights from masked priming. Journal of Experimental Psychology, 137(3), 434–455. 10.1037/a0012799
    https://doi.org/10.1037/a0012799 [Google Scholar]
  67. Plaut, D. C. & Gonnerman, L. M.
    (2000) Are non-semantic morphological effects incompatible with a distributed connectionist approach to lexical processing?Language and Cognitive Processes, 15(4/5), 445–485. 10.1080/01690960050119661
    https://doi.org/10.1080/01690960050119661 [Google Scholar]
  68. Rastle, K. & Davis, M. H.
    (2008) Morphological decomposition based on the analysis of orthography. Language and Cognitive Processes, 23(7–8), 942–971. 10.1080/01690960802069730
    https://doi.org/10.1080/01690960802069730 [Google Scholar]
  69. Rastle, K., Davis, M. H., & New, B.
    (2004) The broth in my brother’s brothel: Morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin & Review, 11, 1090–1098. 10.3758/BF03196742
    https://doi.org/10.3758/BF03196742 [Google Scholar]
  70. Raveh, M.
    (2002) The contribution of frequency and semantic similarity to morphological processing. Brain and Language. 10.1006/brln.2001.2527
    https://doi.org/10.1006/brln.2001.2527 [Google Scholar]
  71. Reingold, E. M., Reichle, E. D., Glaholt, M. G., & Sheridan, H.
    (2012) Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations. Cognitive psychology, 65(2), 177–206. 10.1016/j.cogpsych.2012.03.001
    https://doi.org/10.1016/j.cogpsych.2012.03.001 [Google Scholar]
  72. Sánchez-Gutiérrez, C. H., Mailhot, H., Deacon, S. H., & Wilson, M. A.
    (2018) Morpholex: A derivational morphological database for 70,000 English words. Behavior Research Methods, 50 (4), 1568–1580. 10.3758/s13428‑017‑0981‑8
    https://doi.org/10.3758/s13428-017-0981-8 [Google Scholar]
  73. Schmidtke, D. & Kuperman, V.
    (2019) A paradox of apparent brainless behavior: The time-course of compound word recognition. Cortex, 116, 250–267. 10.1016/j.cortex.2018.07.003
    https://doi.org/10.1016/j.cortex.2018.07.003 [Google Scholar]
  74. Schmidtke, D., Matsuki, K., & Kuperman, V.
    (2017) Surviving blind decomposition: A distributional analysis of the time-course of complex word recognition. Journal of Experimental Psychology. Learning, Memory, and Cognition, 43(11), 1793–1820. 10.1037/xlm0000411
    https://doi.org/10.1037/xlm0000411 [Google Scholar]
  75. Schreuder, R. & Baayen, R. H.
    (1995) Modeling morphological processing. InL. B. Feldman (Ed.), Morphological Aspects of Language Processing (pp.131–154). Hillsdale, New Jersey: Lawrence Erlbaum.
    [Google Scholar]
  76. (1997) How complex simplex words can be. Journal of Memory and Language, 37, 118–139. 10.1006/jmla.1997.2510
    https://doi.org/10.1006/jmla.1997.2510 [Google Scholar]
  77. Silva, R. & Clahsen, H.
    (2008) Morphologically complex words in L1 and L2 processing: Evidence from masked priming experiments in English. Bilingualism: Language and Cognition, 11 (2), 245–260. 10.1017/S1366728908003404
    https://doi.org/10.1017/S1366728908003404 [Google Scholar]
  78. Taft, M.
    (2004) Morphological decomposition and the reverse base frequency effect. The Quarterly Journal of Experimental Psychology, 57A, 745–765. 10.1080/02724980343000477
    https://doi.org/10.1080/02724980343000477 [Google Scholar]
  79. Taft, M. & Forster, K. I.
    (1975) Lexical storage and retrieval of prefixed words. Journal of Verbal Learning and Verbal Behavior, 14, 638–647. 10.1016/S0022‑5371(75)80051‑X
    https://doi.org/10.1016/S0022-5371(75)80051-X [Google Scholar]
  80. Tanenhaus, M., Spivey-Knowlton, M., Eberhard, K., & Sedivy, J.
    (1995) Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634. 10.1126/science.7777863
    https://doi.org/10.1126/science.7777863 [Google Scholar]
  81. Traxler, M. J.
    (2014) Trends in syntactic parsing: Anticipation, bayesian estimation, and good-enough parsing. Trends in Cognitive Sciences, 18(11), 605–611. 10.1016/j.tics.2014.08.001
    https://doi.org/10.1016/j.tics.2014.08.001 [Google Scholar]
  82. Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M.
    (2019) The massive auditory lexical decision (MALD) database. Behavior Research Methods, 51 (3), 1187–1204. 10.3758/s13428‑018‑1056‑1
    https://doi.org/10.3758/s13428-018-1056-1 [Google Scholar]
  83. Tzur, B. & Frost, R.
    (2007) SOA does not reveal the absolute time course of cognitive processing in fast priming experiments. Journal of Memory and Language, 56 (3), 321–335. 10.1016/j.jml.2006.11.007
    https://doi.org/10.1016/j.jml.2006.11.007 [Google Scholar]
  84. Ulicheva, A., Harvey, H., Aronoff, M., & Rastle, K.
    (2020) Skilled readers’ sensitivity to meaningful regularities in English writing. Cognition, 195, 103810. 10.1016/j.cognition.2018.09.013
    https://doi.org/10.1016/j.cognition.2018.09.013 [Google Scholar]
  85. van Rij, J., Baayen, R. H., Wieling, M., & van Rijn, H.
    (2016) itsadug: Interpreting time series, autocorrelated data using GAMMs. R package version 2.2.
    [Google Scholar]
  86. Viviani, E. & Crepaldi, D.
    (2019) Masked morphological priming tracks the development of a fully mature lexical system in L2. 10.31219/osf.io/xdsng
    https://doi.org/10.31219/osf.io/xdsng [Google Scholar]
  87. Voga, M., Anastassiadis-Symeonidis, A., & Giraudo, H.
    (2014) Does morphology play a role in L2 processing?: Two masked priming experiments with Greek speakers of ESL. Lingvisticae Investigationes, 37(2), 338–352. 10.1075/li.37.2.10vog
    https://doi.org/10.1075/li.37.2.10vog [Google Scholar]
  88. Wood, S. N.
    (2017) Generalized additive models: an introduction with R. CRC press. 10.1201/9781315370279
    https://doi.org/10.1201/9781315370279 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error