1887
image of Processing costs in Cantonese-Latin script-mixing
USD
Buy:$35.00 + Taxes

Abstract

Abstract

An emerging trend among young Cantonese speakers is to script-mix morphographic Chinese characters with Latin graphemes in social media exchanges, uncommon in traditional Chinese contexts. Results of a self-paced reading experiment with Cantonese speakers are reported to determine whether script-mixing incurs processing costs, and if so, whether these can be attributed to Inhibitory Control of one of the two scripts or to Dual Activation of both scripts but with slower lexical access within the non-dominant script. Sentences were presented either entirely in Chinese characters or had one region presented in Latin graphemes. Processing costs arose only at the switch from Latin graphemes back to Chinese characters, pointing to the involvement of Inhibitory Control. Further, these costs only appeared in a subset of grammatical categories, potentially coinciding with parsing uncertainties. As such, a combination of script-mixing and parsing complexities could be seen to result in processing costs in certain sentential positions.

Loading

Article metrics loading...

/content/journals/10.1075/ml.24021.tam
2025-01-10
2025-01-20
Loading full text...

Full text loading...

References

  1. Alvarez, R. P., Holcomb, P. J., & Grainger, J.
    (2003) Accessing word meaning in two languages: An event-related brain potential study of beginning bilinguals. Brain and Language, (), –. 10.1016/S0093‑934X(03)00108‑1
    https://doi.org/10.1016/S0093-934X(03)00108-1 [Google Scholar]
  2. Baayen, R. H., Davidson, D. J., & Bates, D. M.
    (2008) Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, (), –. 10.1016/j.jml.2007.12.005
    https://doi.org/10.1016/j.jml.2007.12.005 [Google Scholar]
  3. Bates, D., Mächler, M., Bolker, B., & Walker, S.
    (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, (), –. 10.18637/jss.v067.i01
    https://doi.org/10.18637/jss.v067.i01 [Google Scholar]
  4. Bultena, S., Dijkstra, T., & van Hell, J.
    (2015) Language switch costs in sentence comprehension depend on language dominance: Evidence from self-paced reading*. Bilingualism: Language and Cognition, (), –. 10.1017/S1366728914000145
    https://doi.org/10.1017/S1366728914000145 [Google Scholar]
  5. Costa, A., & Santesteban, M.
    (2004) Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language, (), –. 10.1016/j.jml.2004.02.002
    https://doi.org/10.1016/j.jml.2004.02.002 [Google Scholar]
  6. Cruz, L.
    (2022) Is AoA a relevant variable to account for code-switching processing?Poster presented atIMPRS Conference on Interdisciplinary Approaches in the Language Sciences. Nijmegen, Netherlands.
  7. Dijkstra, T., & van Heuven, W. J. B.
    (1998) The BIA model and bilingual word recognition. InJ. Grainger & A. M. Jacobs (Eds.), Localist connectionist approaches to human cognition (pp.–). Lawrence Erlbaum Associates Publishers.
    [Google Scholar]
  8. Filipović-Đurđević, D., Milin, P., & Feldman, L. B.
    (2013) Bi-alphabetism: A window on phonological processing. Psihologija, (), –. 10.2298/PSI1304421F
    https://doi.org/10.2298/PSI1304421F [Google Scholar]
  9. Green, D. W.
    (1998) Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, (), –. 10.1017/S1366728998000133
    https://doi.org/10.1017/S1366728998000133 [Google Scholar]
  10. Grosjean, F. https://doi.org/10.1093/oso/9780199281282.001.0001 [Google Scholar]
  11. Jegerski, J.
    (2014) Self-paced reading. InJ. Jegerski & B. VanPatten (Eds.), Research Methods in Second Language Psycholinguistics (pp.–). Routledge.
    [Google Scholar]
  12. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B.
    (2017) lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, (), –. 10.18637/jss.v082.i13
    https://doi.org/10.18637/jss.v082.i13 [Google Scholar]
  13. Lee, J.
    (2015) PyCantonese: Cantonese linguistic research in the age of big data [Talk]. https://pycantonese.org/
    [Google Scholar]
  14. Lenth, R. V.
    (2024) emmeans: Estimated Marginal Means, aka Least-Squares Means (R package version 1.10.4). https://CRAN.R-project.org/package=emmeans
    [Google Scholar]
  15. Leung, C. H., & Chan, W. T. Y.
    (2016) Sociolinguistic phenomenon of code mixing in Hong Kong: From a perspective of marketing communications. Humanities & Social Sciences Reviews, (), –. 10.18510/hssr.2016.413
    https://doi.org/10.18510/hssr.2016.413 [Google Scholar]
  16. Levelt, W. J.
    (1992) Accessing words in speech production: Stages, processes and representations. Cognition, (), –. 10.1016/0010‑0277(92)90038‑J
    https://doi.org/10.1016/0010-0277(92)90038-J [Google Scholar]
  17. Li, C. N., & Thompson, S. A.
    (1981) Mandarin Chinese: A functional reference grammar. University of California Press. 10.1525/9780520352858
    https://doi.org/10.1525/9780520352858 [Google Scholar]
  18. Luoma, A.
    (2019) Linguistic Diversity in the Digital Age [MA Thesis]. University of Helsinki.
    [Google Scholar]
  19. Mosca, M., & De Bot, K.
    (2017) Bilingual language switching: Production vs. Recognition. Frontiers in psychology, , . 10.3389/fpsyg.2017.00934
    https://doi.org/10.3389/fpsyg.2017.00934 [Google Scholar]
  20. Proverbio, A. M., Leoni, G., & Zani, A.
    (2004) Language switching mechanisms in simultaneous interpreters: An ERP study. Neuropsychologia, (), –. 10.1016/j.neuropsychologia.2004.04.013
    https://doi.org/10.1016/j.neuropsychologia.2004.04.013 [Google Scholar]
  21. R Core Team
    R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
    [Google Scholar]
  22. Rogers, H.
    (2005) Writing systems: A linguistic approach. Blackwell Publishing.
    [Google Scholar]
  23. Song, J. J.
    (2015) Language policies in North and South Korea. InL. Brown & J. Yeon (Eds.), The Handbook of Korean Linguistics (pp.–). Wiley-Blackwell. 10.1002/9781118371008.ch27
    https://doi.org/10.1002/9781118371008.ch27 [Google Scholar]
  24. Srivastava, A., Bali, K., & Choudhury, M.
    (2020) Understanding Script-Mixing: A Case Study of Hindi-English Bilingual Twitter Users. Proceedings of the The 4th Workshop on Computational Approaches to Code Switching, –. https://aclanthology.org/2020.calcs-1.5
    [Google Scholar]
  25. Tamaoka, K.
    (1991) Psycholinguistic nature of the Japanese orthography. Studies in Language and Literature, (), –.
    [Google Scholar]
  26. Wang, X.
    (2015) Language control in bilingual language comprehension: Evidence from the maze task. Frontiers in Psychology, , . 10.3389/fpsyg.2015.01179
    https://doi.org/10.3389/fpsyg.2015.01179 [Google Scholar]
  27. Wickham, H.
    (2016) ggplot2: Elegant graphics for data analysis. Springer. 10.1007/978‑3‑319‑24277‑4
    https://doi.org/10.1007/978-3-319-24277-4 [Google Scholar]
  28. Wickham, H., François, R., Henry, L., & Müller, K.
    (2020) dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr
    [Google Scholar]
/content/journals/10.1075/ml.24021.tam
Loading
/content/journals/10.1075/ml.24021.tam
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error