1887
Volume 13, Issue 1
  • ISSN 2210-4070
  • E-ISSN: 2210-4097
USD
Buy:$35.00 + Taxes

Abstract

Abstract

This paper discusses a way of operationalizing metaphoricity quantitatively using a numerical measure of the semantic distance between two domains. We demonstrate the construct validity of this measure with respect to metaphoricity and creativity judgments in the domain of English synesthetic metaphors – expressions such as and that involve combinations of terms from conceptually distinct sensory modalities. In a pre-registered study, we find that a continuous measure of sensory modality difference predicts metaphoricity and creativity judgments. While our results use synesthetic metaphors as a test case, it is possible to extend the application of our measure of semantic distance to other metaphorical expressions. In addition to demonstrating the utility of this measure, this work also demonstrates the utility of rating data in the domain of metaphor research.

Loading

Article metrics loading...

/content/journals/10.1075/msw.00029.win
2023-07-07
2025-02-19
Loading full text...

Full text loading...

References

  1. Bloomfield, L.
    (1933) Language. Chicago University Press.
    [Google Scholar]
  2. Brysbaert, M., Warriner, A. B., & Kuperman, V.
    (2014) Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904–911. 10.3758/s13428‑013‑0403‑5
    https://doi.org/10.3758/s13428-013-0403-5 [Google Scholar]
  3. Bürkner, P.-C.
    (2017) brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. 10.18637/jss.v080.i01
    https://doi.org/10.18637/jss.v080.i01 [Google Scholar]
  4. Bürkner, P.-C., & Vuorre, M.
    (2019) Ordinal regression models in psychology: A tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. 10.1177/2515245918823199
    https://doi.org/10.1177/2515245918823199 [Google Scholar]
  5. Chersoni, E., Strik Lievers, F., & Huang, C.-R.
    (2019) Semantic distance and creativity in linguistic synaesthesia. InR. Otoguro, M. Komachi, & T. Ohkuma (Eds.), Proceedings of the 33rd Pacific Asia Conference on Language, Information and Computation (pp. 370–378). Waseda Institute for the Study of Language and Information.
    [Google Scholar]
  6. Dąbrowska, E.
    (2016a) Cognitive Linguistics’ seven deadly sins. Cognitive Linguistics, 27(4), 479–491. 10.1515/cog‑2016‑0059
    https://doi.org/10.1515/cog-2016-0059 [Google Scholar]
  7. (2016b) Looking into introspection. InG. Drożdż (Ed.), Studies in Lexicogrammar: Theory and applications (pp. 55–74). John Benjamins. 10.1075/hcp.54.03dab
    https://doi.org/10.1075/hcp.54.03dab [Google Scholar]
  8. Dubois, D.
    (2000) Categories as acts of meaning: The case of categories in olfaction and audition. Cognitive Science Quarterly, 1(1), 35–68.
    [Google Scholar]
  9. Dunn, J.
    (2015) Modeling abstractness and metaphoricity. Metaphor and Symbol, 30(4), 259–289. 10.1080/10926488.2015.1074801
    https://doi.org/10.1080/10926488.2015.1074801 [Google Scholar]
  10. Evans, N., & Wilkins, D.
    (2000) In the mind’s ear: The semantic extensions of perception verbs in Australian languages. Language, 76(3), 546–592. 10.2307/417135
    https://doi.org/10.2307/417135 [Google Scholar]
  11. Firth, J. R.
    (1957) Papers in linguistics, 1934–1951. Oxford University Press.
    [Google Scholar]
  12. Gentner, D., Brem, S., Ferguson, R., & Wolff, P.
    (1997) Analogy and creativity in the works of Johannes Kepler. InT. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creative thought: An investigation of conceptual structures and processes. (pp. 403–459). American Psychological Association. 10.1037/10227‑016
    https://doi.org/10.1037/10227-016 [Google Scholar]
  13. Gibbs, R. W.
    (1994) The poetics of mind: Figurative thought, language, and understanding. Cambridge University Press.
    [Google Scholar]
  14. (2007) Why cognitive linguists should care more about empirical methods. InM. Gonzalez-Marquez, I. Mittelberg, S. Coulson, & M. Spivey (Eds.), Methods in Cognitive Linguistics (pp. 2–18). John Benjamins. 10.1075/hcp.18.06gib
    https://doi.org/10.1075/hcp.18.06gib [Google Scholar]
  15. Günther, F., Rinaldi, L., & Marelli, M.
    (2019) Vector-space models of semantic representation from a cognitive perspective: A discussion of common misconceptions. Perspectives on Psychological Science, 14(6), 1006–1033. 10.1177/1745691619861372
    https://doi.org/10.1177/1745691619861372 [Google Scholar]
  16. Hanks, P.
    (2006) Metaphoricity is gradable. InA. Stefanowitsch & S. Gries (Eds.), Corpus-based approaches to metaphor and metonymy (pp. 17–35). Mouton de Gruyter. 10.1515/9783110199895.17
    https://doi.org/10.1515/9783110199895.17 [Google Scholar]
  17. Hidalgo-Downing, L.
    (2015) Metaphor and metonymy. InR. Jones (Ed.), The Routledge handbook of language and creativity (pp.129–150).
    [Google Scholar]
  18. Holyoak, K. J., & Stamenković, D.
    (2018) Metaphor comprehension: A critical review of theories and evidence. Psychological Bulletin, 144(6), 641. 10.1037/bul0000145
    https://doi.org/10.1037/bul0000145 [Google Scholar]
  19. Indurkhya, B.
    (1992) Metaphor and cognition. An interactionist approach. Kluwer. 10.1007/978‑94‑017‑2252‑0
    https://doi.org/10.1007/978-94-017-2252-0 [Google Scholar]
  20. Keuleers, E., & Balota, D. A.
    (2015) Megastudies, crowdsourcing, and large datasets in psycholinguistics: An overview of recent developments. The Quarterly Journal of Experimental Psychology, 68(8), 1457–1468. 10.1080/17470218.2015.1051065
    https://doi.org/10.1080/17470218.2015.1051065 [Google Scholar]
  21. Kim, Y., Dykema, J., Stevenson, J., Black, P., & Moberg, D. P.
    (2019) Straightlining: Overview of measurement, comparison of indicators, and effects in mail–web mixed-mode surveys. Social Science Computer Review, 37(2), 214–233. 10.1177/0894439317752406
    https://doi.org/10.1177/0894439317752406 [Google Scholar]
  22. Krifka, M.
    (2010) A note on an asymmetry in the hedonic implicatures of olfactory and gustatory terms. InS. Fuchs, P. Hoole, C. Mooshammer, & M. Żygis (Eds.), Between the regular and the particular in speech and language (pp. 235–245). Peter Lang.
    [Google Scholar]
  23. Lakoff, G., & Johnson, M.
    (1980) Metaphors we live by. University of Chicago Press.
    [Google Scholar]
  24. Landauer, T. K., & Dumais, S. T.
    (1997) A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211. 10.1037/0033‑295X.104.2.211
    https://doi.org/10.1037/0033-295X.104.2.211 [Google Scholar]
  25. Lenci, A.
    (2008) Distributional semantics in linguistic and cognitive research. Italian Journal of Linguistics, 20(1), 1–31.
    [Google Scholar]
  26. (2018) Distributional models of word meaning. Annual Review of Linguistics, 41, 151–171. 10.1146/annurev‑linguistics‑030514‑125254
    https://doi.org/10.1146/annurev-linguistics-030514-125254 [Google Scholar]
  27. Leung, A. K. -y., Kim, S., Polman, E., Ong, L. S., Qiu, L., Goncalo, J. A., & Sanchez-Burks, J.
    (2012) Embodied metaphors and creative “acts.” Psychological Science, 23(5), 502–509. 10.1177/0956797611429801
    https://doi.org/10.1177/0956797611429801 [Google Scholar]
  28. Levinson, S. C., & Majid, A.
    (2014) Differential ineffability and the senses. Mind & Language, 29(4), 407–427. 10.1111/mila.12057
    https://doi.org/10.1111/mila.12057 [Google Scholar]
  29. Lund, K., & Burgess, C.
    (1996) Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, 28(2), 203–208. 10.3758/BF03204766
    https://doi.org/10.3758/BF03204766 [Google Scholar]
  30. Lynott, D., & Connell, L.
    (2009) Modality exclusivity norms for 423 object properties. Behavior Research Methods, 41(2), 558–564. 10.3758/BRM.41.2.558
    https://doi.org/10.3758/BRM.41.2.558 [Google Scholar]
  31. (2013) Modality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form. Behavior Research Methods, 45(2), 516–526. 10.3758/s13428‑012‑0267‑0
    https://doi.org/10.3758/s13428-012-0267-0 [Google Scholar]
  32. Lynott, D., Connell, L., Brysbaert, M., Brand, J., & Carney, J.
    (2019) The Lancaster Sensorimotor Norms: Multidimensional measures of perceptual and action strength for 40,000 English words. Behavior Research Methods, 1–21. 10.3758/s13428‑019‑01316‑z
    https://doi.org/10.3758/s13428-019-01316-z [Google Scholar]
  33. Medler, D. A., Arnoldussen, A., Binder, J. R., & Seidenberg, M. S.
    (2005) The Wisconsin perceptual attribute ratings database. Retrieved fromwww.neuro.mcw.edu/ratings/
    [Google Scholar]
  34. Müller, C.
    (2008) Metaphors dead and alive, sleeping and waking: A dynamic view. University of Chicago Press. 10.7208/chicago/9780226548265.001.0001
    https://doi.org/10.7208/chicago/9780226548265.001.0001 [Google Scholar]
  35. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H.
    (1957) The measurement of meaning. University of Illinois Press.
    [Google Scholar]
  36. Paivio, A., Yuille, J. C., & Madigan, S. A.
    (1968) Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76(1p2), 1. 10.1037/h0025327
    https://doi.org/10.1037/h0025327 [Google Scholar]
  37. Popova, Y.
    (2005) Image schemas and verbal synaesthesia. InB. Hampe (Ed.), From perception to meaning: Image schemas in cognitive linguistics (Vol.291, pp.395–419). Mouton de Gruyter. 10.1515/9783110197532.5.395
    https://doi.org/10.1515/9783110197532.5.395 [Google Scholar]
  38. Prandi, M.
    (2017) Conceptual conflicts in metaphors and figurative language. Routledge. 10.4324/9781315208763
    https://doi.org/10.4324/9781315208763 [Google Scholar]
  39. R Core Team
    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing.
    [Google Scholar]
  40. Ronga, I.
    (2016) Taste synaesthesias: Linguistic features and neurophysiological bases. InE. Gola & F. Ervas (Eds.), Metaphor and Communication (pp. 47–60). John Benjamins. 10.1075/milcc.5.03ron
    https://doi.org/10.1075/milcc.5.03ron [Google Scholar]
  41. Scott, G. G., Keitel, A., Becirspahic, M., Yao, B., & Sereno, S. C.
    (2019) The Glasgow Norms: Ratings of 5,500 words on nine scales. Behavior Research Methods, 51(3), 1258–1270. 10.3758/s13428‑018‑1099‑3
    https://doi.org/10.3758/s13428-018-1099-3 [Google Scholar]
  42. Shen, Y.
    (1997) Cognitive constraints on poetic figures. Cognitive Linguistics, 8(1), 33–72. 10.1515/cogl.1997.8.1.33
    https://doi.org/10.1515/cogl.1997.8.1.33 [Google Scholar]
  43. Stadtlander, L. M., & Murdoch, L. D.
    (2000) Frequency of occurrence and rankings for touch-related adjectives. Behavior Research Methods, Instruments, & Computers, 32(4), 579–587. 10.3758/BF03200831
    https://doi.org/10.3758/BF03200831 [Google Scholar]
  44. Strik Lievers, F.
    (2015) Synaesthesia: A corpus-based study of cross-modal directionality. Functions of Language, 22(1), 69–95. 10.1075/fol.22.1.04str
    https://doi.org/10.1075/fol.22.1.04str [Google Scholar]
  45. (2017) Figures and the senses. Review of Cognitive Linguistics, 15(1), 83–101. 10.1075/rcl.15.1.04str
    https://doi.org/10.1075/rcl.15.1.04str [Google Scholar]
  46. Ullmann, S.
    (1959) The principles of semantics. Jackson, Son & Co.
    [Google Scholar]
  47. Vecchi, E. M., Marelli, M., Zamparelli, R., & Baroni, M.
    (2017) Spicy adjectives and nominal donkeys: Capturing semantic deviance using compositionality in distributional spaces. Cognitive Science, 41(1), 102–136. 10.1111/cogs.12330
    https://doi.org/10.1111/cogs.12330 [Google Scholar]
  48. Viberg, Å.
    (1983) The verbs of perception: A typological study. Linguistics, 21(1), 123–162. 10.1515/ling.1983.21.1.123
    https://doi.org/10.1515/ling.1983.21.1.123 [Google Scholar]
  49. Wan, M., Ahrens, K., Chersoni, E., Jiang, M., Su, Q., Xiang, R., & Huang, C.-R.
    (2020) Using conceptual norms for metaphor detection. Proceedings of the Second Workshop on Figurative Language Processing, 104–109. 10.18653/v1/2020.figlang‑1.16
    https://doi.org/10.18653/v1/2020.figlang-1.16 [Google Scholar]
  50. Wan, M., Xing, B., Qi Su Liu, P., & Huang, C.-R.
    (2020) Sensorimotor enhanced neural network for metaphor detection. Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation, 312–317.
    [Google Scholar]
  51. Warriner, A. B., Kuperman, V., & Brysbaert, M.
    (2013) Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207. 10.3758/s13428‑012‑0314‑x
    https://doi.org/10.3758/s13428-012-0314-x [Google Scholar]
  52. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., & Hester, J.
    (2019) Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. 10.21105/joss.01686
    https://doi.org/10.21105/joss.01686 [Google Scholar]
  53. Williams, J. M.
    (1976) Synaesthetic adjectives: A possible law of semantic change. Language, 52(2), 461–478. 10.2307/412571
    https://doi.org/10.2307/412571 [Google Scholar]
  54. Winter, B.
    (2016) Taste and smell words form an affectively loaded and emotionally flexible part of the English lexicon. Language, Cognition and Neuroscience, 31(8), 975–988. 10.1080/23273798.2016.1193619
    https://doi.org/10.1080/23273798.2016.1193619 [Google Scholar]
  55. (2019a) Sensory linguistics: Language, perception, and metaphor. John Benjamins. 10.1075/celcr.20
    https://doi.org/10.1075/celcr.20 [Google Scholar]
  56. (2019b) Synaesthetic metaphors are neither synaesthetic nor metaphorical. InL. J. Speed, C. O’Meara, L. San Roque, & A. Majid (Eds.), Perception metaphor. John Benjamins. 10.1075/celcr.19.06win
    https://doi.org/10.1075/celcr.19.06win [Google Scholar]
  57. (2021) Managing semantic norms for cognitive linguistics, corpus linguistics, and lexicon studies. InA. L. Berez-Kroeker, B. McDonnell, E. Koller, & L. B. Collister (Eds.), The open handbook of linguistic data management. MIT Press.
    [Google Scholar]
  58. Winter, B., Perlman, M., & Majid, A.
    (2018) Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 1791, 213–220. 10.1016/j.cognition.2018.05.008
    https://doi.org/10.1016/j.cognition.2018.05.008 [Google Scholar]
  59. Winter, B., & Srinivasan, M.
    (2021) Why is semantic change asymmetric? The role of concreteness and word frequency in metaphor and metonymy. Metaphor and Symbol. 10.1080/10926488.2021.1945419
    https://doi.org/10.1080/10926488.2021.1945419 [Google Scholar]
  60. Zhang, C., & Conrad, F.
    (2014) Speeding in web surveys: The tendency to answer very fast and its association with straightlining. Survey Research Methods, 8(2), 127–135. 10.18148/srm/2014.v8i2.5453
    https://doi.org/10.18148/srm/2014.v8i2.5453 [Google Scholar]
/content/journals/10.1075/msw.00029.win
Loading
/content/journals/10.1075/msw.00029.win
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error