1887
Volume 1, Issue 2
  • ISSN 2950-189X
  • E-ISSN: 2950-1881

Abstract

Abstract

Words with larger morphological families elicit shorter response times (RTs) in lexical decision experiments (e.g., Bertram et al. 2000). One possible account for this (FS) effect draws on the (DLM; Chuang & Baayen 2021), positing that morphological family members strengthen relationships between forms and meanings. While it has been shown that the DLM successfully explains FS effects in reading (Mulder et al. 2014), we investigated whether it does so in listening too. We trained the computational model LDL-AURIS (Shafaei-Bajestan et al. 2023), which implements the DLM, on Dutch and show that a measure derived from LDL-AURIS accounts for variance in auditory lexical decision RTs in Dutch, and also partially accounts for the same variance in the RTs as the auditory FS effect. Future research should investigate whether some other measure derived from the DLM can fully explain FS effects in listening.

Available under the CC BY 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/nb.00010.mul
2025-01-24
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/nb.00010.mul.html?itemId=/content/journals/10.1075/nb.00010.mul&mimeType=html&fmt=ahah

References

  1. Arnold, Denis, Fabian Tomaschek, Konstantin Sering, Florence Lopez & Harald R. Baayen
    2017 Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit. PloS one12(4). e0174623. 10.1371/journal.pone.0174623
    https://doi.org/10.1371/journal.pone.0174623 [Google Scholar]
  2. Baayen, R. Harald, Richard Piepenbrock & Leon Gulikers
    1996 The celex lexical database (cd-rom). Linguistic Data Consortium.
    [Google Scholar]
  3. Bates, Douglas, Martin Mächler, Ben Bolker & Steve Walker
    2015 Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software67(1). 1–48. 10.18637/jss.v067.i01
    https://doi.org/10.18637/jss.v067.i01 [Google Scholar]
  4. Bertram, Raymond, Harald R. Baayen & Robert Schreuder
    2000 Effects of family size for complex words. Journal of Memory and Language421. 390–405. 10.1006/jmla.1999.2681
    https://doi.org/10.1006/jmla.1999.2681 [Google Scholar]
  5. Bezanson, Jeff, Alan Edelman, Stefan Karpinski & Viral B. Shah
    2017 Julia: A fresh approach to numerical computing. SIAM review59(1). 65–98. 10.1137/141000671
    https://doi.org/10.1137/141000671 [Google Scholar]
  6. Chuang, Yu-Ying & Harald R. Baayen
    2021 Discriminative learning and the lexicon: NDL and LDL. InOxford research encyclopedia of linguistics. 10.1093/acrefore/9780199384655.013.375
    https://doi.org/10.1093/acrefore/9780199384655.013.375 [Google Scholar]
  7. Chuang, Yu-Ying, Janice Fon, Ioannes Papakyritsis & Harald R. Baayen
    2021 Analyzing phonetic data with generalized additive mixed models. InManual of clinical phonetics, 108–138. 10.4324/9780429320903‑10
    https://doi.org/10.4324/9780429320903-10 [Google Scholar]
  8. Ernestus, Mirjam & Anne Cutler
    2015 Baldey: A database of auditory lexical decisions. Quarterly Journal of Experimental Psychology681. 1469–1488. 10.1080/17470218.2014.984730
    https://doi.org/10.1080/17470218.2014.984730 [Google Scholar]
  9. Heitmeier, Maria, Yu-Ying Chuang, Seth D. Axen & Harald R. Baayen
    2023a Frequency effects in Linear Discriminative Learning. arXiv preprint arXiv:2306.11044.
    [Google Scholar]
  10. Heitmeier, Maria, Yu-Ying Chuang & Harald R. Baayen
    2023b How trial-to-trial learning shapes mappings in the mental lexicon: Modelling lexical decision with linear discriminative learning. Cognitive Psychology1461. 101598. 10.1016/j.cogpsych.2023.101598
    https://doi.org/10.1016/j.cogpsych.2023.101598 [Google Scholar]
  11. Luo, Xuefeng, Yu-Ying Chuang & Harald R. Baayen
    2020JudiLing: an implementation in Julia of Linear Discriminative Learning algorithms for language model. Eberhard Karls Universität Tübingen, Seminar für Sprachwissenschaft.
    [Google Scholar]
  12. Marslen-Wilson, William D. & Alan Welsh
    1978 Processing interactions and lexical access during word recognition in continuous speech. Cognitive psychology10(1). 29–63. 10.1016/0010‑0285(78)90018‑X
    https://doi.org/10.1016/0010-0285(78)90018-X [Google Scholar]
  13. Mikolov, Tomas, Kai Chen, Greg Corrado & Jeffrey Dean
    2013 Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
    [Google Scholar]
  14. Moscoso del Prado Martín, Fermín, Raymond Bertram, Tuomo Häikiö, Robert Schreuder & Harald R. Baayen
    2004 Morphological family size in a morphologically rich language: The case of Finnish compared with Dutch and Hebrew. Journal of Experimental Psychology: Learning, Memory, and Cognition301. 1271.
    [Google Scholar]
  15. Mulder, Kimberley, Ton Dijkstra, Robert Schreuder & Harald R. Baayen
    2014 Effects of primary and secondary morphological family size in monolingual and bilingual word processing. Journal of Memory and Language721. 59–84. 10.1016/j.jml.2013.12.004
    https://doi.org/10.1016/j.jml.2013.12.004 [Google Scholar]
  16. Mulder, Kimberley, Robert Schreuder & Ton Dijkstra
    2013 Morphological family size effects in L1 and L2 processing: An electrophysiological study. Language and Cognitive Processes281. 1004–1035. 10.1080/01690965.2012.733013
    https://doi.org/10.1080/01690965.2012.733013 [Google Scholar]
  17. Müller, Hanno, Louis ten Bosch & Mirjam Ernestus
    2024The family size effect in visual and auditory word recognition. Language, Cognition and Neuroscience, 1–22. 10.1080/23273798.2024.2337941
    https://doi.org/10.1080/23273798.2024.2337941 [Google Scholar]
  18. Nieuwenhuijse, Alexander
    2018 Dutch word2vec model. Retrieved2022-02-10, fromhttps://github.com/coosto/dutch-word-embeddings
  19. Oostdijk, Nelleke
    2000 The Spoken Dutch Corpus. Overview and First Evaluation. InLREC (pp.887–894).
    [Google Scholar]
  20. R Core Team
    R Core Team 2017 R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved fromhttps://www.R-project.org/
  21. Rayner, Keith
    1998 Eye movements in reading and information processing: 20 years of research. Psychological Bulletin124(3). 372. 10.1037/0033‑2909.124.3.372
    https://doi.org/10.1037/0033-2909.124.3.372 [Google Scholar]
  22. Shafaei-Bajestan, Elnaz, Masoumeh Moradipour-Tari, Peter Uhrig & Harald R. Baayen
    2023 LDL-AURIS: A computational model, grounded in error-driven learning, for the comprehension of single spoken words. Language, Cognition and Neuroscience, 1–28. 10.1080/23273798.2021.1954207
    https://doi.org/10.1080/23273798.2021.1954207 [Google Scholar]
  23. ten Bosch, Louis, Mirjam Ernestus & Lou Boves
    2018 Analyzing Reaction Time Sequences from Human Participants in Auditory Experiments Proceedings of Interspeech 2018: The 19th Annual Conference of the International Speech Communication Association, pages971–975.
    [Google Scholar]
  24. ten Bosch, Louis, Lou Boves & Mirjam Ernestus
    2022 DIANA, a process-oriented model of human auditory word recognition. Brain Sciences12(5). 681–710. 10.3390/brainsci12050681
    https://doi.org/10.3390/brainsci12050681 [Google Scholar]
  25. Tomaschek, Fabian, Peter Hendrix & Harald R. Baayen
    2018 Strategies for addressing collinearity in multivariate linguistic data. Journal of Phonetics711. 249–267. 10.1016/j.wocn.2018.09.004
    https://doi.org/10.1016/j.wocn.2018.09.004 [Google Scholar]
  26. Wood, Simon
    2015 Package ‘mgcv’. R package version, 1, 29.
    [Google Scholar]
/content/journals/10.1075/nb.00010.mul
Loading
/content/journals/10.1075/nb.00010.mul
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error