1887
Volume 34, Issue 2
  • ISSN 1387-6740
  • E-ISSN: 1569-9935
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Computational recognition of narratives, if successful, would find innumerable applications with large digitized datasets. Systematic identification of narratives in the text flow could significantly contribute to such pivotal questions as where, when, and how narratives are employed. This paper discusses an approach to extract narratives from two datasets, Finnish parliamentary records (1980–2021) and oral history interviews with former Finnish MPs (1988–2018). Our study was based on an iterative approach, proceeding from original expert readings to a rule-based, computational approach that was elaborated with the help of annotated samples and annotation scheme. Annotated samples and computationally found extracts were compared, and a good correspondence was found. In this paper, we exhibit and compare the results from annotation and rule-based approach, and discuss examples of correctly and incorrectly found narrative sections. We consider that all attempts at recognizing and extracting narratives are definition dependent, and feed back to narrative theory.

Loading

Article metrics loading...

/content/journals/10.1075/ni.22028.hat
2024-01-16
2025-04-24
Loading full text...

Full text loading...

References

  1. Abbott, H. P.
    (2002) The Cambridge introduction to narrative. Cambridge University Press.
    [Google Scholar]
  2. Andrade, S. B., & Andersen, D.
    (2020) Digital story grammar: A quantitative methodology for narrative analysis. International Journal of Social Research Methodology, 231, 405–421. 10.1080/13645579.2020.1723205
    https://doi.org/10.1080/13645579.2020.1723205 [Google Scholar]
  3. Andrushchenko, M., Sandberg, K., Turunen, R., Marjanen, J., Hatavara, M., Kurunmäki, J., Nummenmaa, T., Hyvärinen, M., Teräs, K., Peltonen, J., & Nummenmaa, J.
    (2021) Using parsed and annotated corpora to analyze parliamentarians’ talk in Finland. Journal of the Association for Information Science and Technology, 73(2), 288–302. 10.1002/asi.24500
    https://doi.org/10.1002/asi.24500 [Google Scholar]
  4. Bögel, T., Strötgen, J., & Gertz, M.
    (2015) A hybrid approach to extract temporal signals from narratives. InProceedings of the International Conference of the German Society for Computational Linguistics and Language Technology (pp.106–107). https://konvens.org/proceedings/2015/GSCL-201500.pdf
    [Google Scholar]
  5. Carroll, N.
    (2001) On the narrative connection. InW. van Peer & S. Chatman (Eds.), New perspectives on narrative perspective (pp.21–41). State University of New York Press. 10.1017/CBO9780511605970.009
    https://doi.org/10.1017/CBO9780511605970.009 [Google Scholar]
  6. Cohn, D.
    (1978) Transparent minds: Narrative modes for presenting consciousness in fiction. Princeton University Press. 10.1515/9780691213125
    https://doi.org/10.1515/9780691213125 [Google Scholar]
  7. Eisenberg, J. D., & Finlayson, M. A.
    (2016) Automatic identification of narrative diegesis and point of view. InProceedings of 2nd Workshop on Computing News Storylines (pp.36–46). Association for Computational Linguistics. 10.18653/v1/W16‑5705
    https://doi.org/10.18653/v1/W16-5705 [Google Scholar]
  8. Ek, A., & Wiren, M.
    (2019) Distinguishing narration and speech in prose fiction dialogues. InC. Navaretta, M. Agirrezabal, & B. Maegaard (Eds.), Proceedings of the Digital Humanities in the Nordic Countries 4th Conference (pp.124–132). CEUR-WS.org. CEUR-WS.org/Vol-2364/
    [Google Scholar]
  9. Fludernik, M.
    (1996) Towards a ‘natural’ narratology. Routledge.
    [Google Scholar]
  10. Genette, G.
    (1980) Narrative discourse revisited. Cornell University Press.
    [Google Scholar]
  11. Hatavara, M., & Mildorf, J.
    (2017) Fictionality, narrative models, and vicarious storytelling. Style, 511, 391–408. 10.5325/style.51.3.0391
    https://doi.org/10.5325/style.51.3.0391 [Google Scholar]
  12. Haverinen, K., Nyblom, J., Viljanen, T., Laippala, V., Kohonen, S., Missilä, A., Ojala, S., Salakoski, T., & Ginter, F.
    (2014) Building the essential resources for Finnish: The Turku dependency treebank. Language Resources and Evaluation, 48(3), 493–531. 10.1007/s10579‑013‑9244‑1
    https://doi.org/10.1007/s10579-013-9244-1 [Google Scholar]
  13. Herman, D.
    (2002) Story logic: Problems and possibilities of narrative. Nebraska University Press.
    [Google Scholar]
  14. (2009) Basic elements of narrative. Wiley-Blackwell. 10.1002/9781444305920
    https://doi.org/10.1002/9781444305920 [Google Scholar]
  15. Labov, W., & Waletzky, J.
    (1997/1967) Narrative analysis: Oral versions of personal experience. Journal of Narrative and Life History, 7(1–4), 3–38. (Reprinted from Essays on the verbal and visual arts: proceedings of the 1966 annual spring meeting of the American Ethnological Societyed. byJune Helm, Seattle: University of Washington Press 1967).
    [Google Scholar]
  16. Lin, C., Wright-Bettner, K., Miller, T., Bethard, S., Dligach, D., Palmer, M., Martin, J. H., & Savova, G.
    (2020) Defining and learning refined temporal relations in the clinical narrative. InProceedings of the 11th International Workshop on Health Text Mining and Information Analysis (pp.104–114). Association for Computational Linguistics. 10.18653/v1/2020.louhi‑1.12
    https://doi.org/10.18653/v1/2020.louhi-1.12 [Google Scholar]
  17. Lindstedt, J.
    (2000) The perfect – aspectual, temporal and evidential. InÖ. Dahl (Ed.), Tense and aspect in the languages of Europe (pp.259–277). Mouton de Gruyter. 10.1515/9783110197099.3.365
    https://doi.org/10.1515/9783110197099.3.365 [Google Scholar]
  18. Mani, I.
    (2014) Computational narratology. InP. Hühn, J. C. Meister, J. Pier, & W. Schmid (Eds.), Handbook of narratology (pp.84–92). De Gruyter, Inc. 10.1515/9783110316469.84
    https://doi.org/10.1515/9783110316469.84 [Google Scholar]
  19. Martin, J. R., & Rose, D.
    (2008) Genre relations. Mapping culture. Equinox.
    [Google Scholar]
  20. Miller, B., & Park, J. S.
    (2020) Computing narrative. InF. Karsdorp, B. McGillivray, A. Nerghes, & M. Wevers (Eds.), Proceedings of the Workshop on Computational Humanities Research (pp.182–190). CEUR-WS.org. ceur-ws.org/Vol-2723/
    [Google Scholar]
  21. Pallaskallio, R.
    (2013) Kertova tempus: finiittiverbin aikamuodon valinta suomenkielisissä katastrofiuutisteksteissä 1860–2004 [Narrative usage of tense in Finnish disaster news texts 1860–2004]. University of Helsinki, Faculty of Arts, Department of Finnish, Finno-Ugrian and Scandinavian Studies. hdl.handle.net/10138/40335
    [Google Scholar]
  22. Piper, A., So, R. J., & Bamman, D.
    (2021) Narrative theory for computational narrative understanding. InProceedings of the 2021 Conference on EMNLP (pp.298–311). Association for Computational Linguistics. 10.18653/v1/2021.emnlp‑main.26
    https://doi.org/10.18653/v1/2021.emnlp-main.26 [Google Scholar]
  23. Prince, G.
    (1982) Narratology. The form and functioning of narrative. Mouton. 10.1515/9783110838626
    https://doi.org/10.1515/9783110838626 [Google Scholar]
  24. (1987) A dictionary of narratology. University of Nebraska Press.
    [Google Scholar]
  25. Rappaport Hovav, M., & Levin, B.
    (2015) The syntax-semantics interface: Semantic roles and syntactic arguments. InS. Lappin & C. Fox (Eds.), The handbook of contemporary semantic theory (pp.593–624). 2nd ed.Wiley Blackwell. 10.1002/9781118882139.ch19
    https://doi.org/10.1002/9781118882139.ch19 [Google Scholar]
  26. Reiter, N., Willand, M., & Gius, E.
    (2019) A shared task for the digital humanities chapter 1: Introduction to annotation, narrative levels and shared tasks. Journal of Cultural Analytics4(3). 10.22148/16.048
    https://doi.org/10.22148/16.048 [Google Scholar]
  27. Sagae, K., Gordon, A. S., Dehghani, M., Metke, M., Kim, J. S., Gimbel, S. I., Tipper, C., Kaplan, J., & Immordino-Yang, M. H.
    (2013) A Data-Driven Approach for Classification of Subjectivity in Personal Narratives. InM. A. Finlayson, B. Fisseni, B. Löwe, & J. C. Meister (Eds.), Workshop on Computational Models of Narrative 2013 (pp.198–213). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 10.4230/OASIcs.CMN.2013.198
    https://doi.org/10.4230/OASIcs.CMN.2013.198 [Google Scholar]
  28. Sudhahar, S., Franzosi, R., & Cristianini, N.
    (2011) Automating quantitative narrative analysis of news data. InT. Diethe, J. Balcázar, J. Shawe-Taylor, & C. Tîrnăucă (Eds.), JMLR: Workshop and Conference Proceedings171, 63–71. proceedings.mlr.press/v17/sudhahar11a/sudhahar11a.pdf
    [Google Scholar]
  29. Tammi, P.
    (2006) Against narrative. A boring story. Partial Answers, 4(2), 19–40. 10.1353/pan.0.0113
    https://doi.org/10.1353/pan.0.0113 [Google Scholar]
  30. Virtanen, T.
    (1992) Issues of text typology: Narrative – a ‘basic’ type of text?Text, 121, 293–310.
    [Google Scholar]
  31. VoDe Corpora
    VoDe Corpora (2021) Parliamentary text corpus. Voices of Democracy Project, Plenary sessions of the parliament of Finland from 1980 to 2021. Interview corpus. Voices of Democracy Project, 404 veteran parliamentarians’ interviews. Both corpora grammatically parsed. Requires separate access rights.
    [Google Scholar]
  32. Voutilainen, E. R. J.
    (2017) The regulation of linguistic quality in the official speech-to-text reports of the Finnish parliament. CoMe: Studies on Communication and Linguistic and Cultural Mediation, 61–73. comejournal.com/wp-content/uploads/2019/06/5.-CoMe-II-1-2017.-Voutilainen.pdf
    [Google Scholar]
  33. White, H.
    (1987) The content of the form. Narrative discourse and historical representation. The Johns Hopkins University Press.
    [Google Scholar]
  34. Yang, H., & Garibaldi, J. M.
    (2015) Automatic detection of protected health information from clinic narratives. Journal of Biomedical Informatics, 581, S30–S38. 10.1016/j.jbi.2015.06.015
    https://doi.org/10.1016/j.jbi.2015.06.015 [Google Scholar]
  35. Zhang, H., Boons, F., & Batista-Navarro, R.
    (2019) Whose story is it anyway? Automatic extraction of accounts from news articles. Information Processing and Management, 56(5), 1837–1848. 10.1016/j.ipm.2019.02.012
    https://doi.org/10.1016/j.ipm.2019.02.012 [Google Scholar]
/content/journals/10.1075/ni.22028.hat
Loading
/content/journals/10.1075/ni.22028.hat
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error