1887
Volume 25, Issue 1
  • ISSN 0929-0907
  • E-ISSN: 1569-9943
USD
Buy:$35.00 + Taxes

Abstract

Abstract

This paper presents the NeoCrawler – a tailor-made webcrawler, which identifies and retrieves neologisms from the Internet and systematically monitors the use of detected neologisms on the web by means of weekly searches. It enables researchers to use the web as a corpus in order to investigate the dynamics of lexical innovation on a large-scale and systematic basis. The NeoCrawler represents an innovative web-mining tool which opens up new opportunities for linguists to tackle a number of unresolved and under-researched issues in the field of lexical innovation. This paper presents the design as well as the most important characteristics of two modules, the Discoverer and the Observer, with regard to the usage-based study of lexical innovation and diffusion.

Loading

Article metrics loading...

/content/journals/10.1075/pc.00006.ker
2019-06-12
2019-08-21
Loading full text...

Full text loading...

References

  1. Algeo, John
    1998 Vocabulary. In Suzanne Romaine (ed.), The Cambridge history of the English Language, vol.3, Cambridge: Cambridge University Press. 57–91.
    [Google Scholar]
  2. Ayto, John
    2003 Newspapers and neologisms. In Jean Aitchison & Diana M. Lewis (eds.), New media language, 182–187. Routledge: New York.
    [Google Scholar]
  3. Baayen, Harald R. & Anneke Neijt
    1997 Productivity in context: A case study of a Dutch suffix. Linguistics35. 565–587. 10.1515/ling.1997.35.3.565
    https://doi.org/10.1515/ling.1997.35.3.565 [Google Scholar]
  4. Bauer, Laurie
    1983English word-formation. Cambridge: Cambridge University Press. 10.1017/CBO9781139165846
    https://doi.org/10.1017/CBO9781139165846 [Google Scholar]
  5. Cabré, Maria Teresa & Lluís de Yzaguirre
    1995 Stratégie pour la détection semiautomatique des néologismes de presse. TTR: Traduction, Terminologie, Redaction8. 89–100. 10.7202/037219ar
    https://doi.org/10.7202/037219ar [Google Scholar]
  6. Cartier, Emmanuel
    2017 Neoveille, a web platform for neologism tracking. Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 95–98. 10.18653/v1/E17‑3024
    https://doi.org/10.18653/v1/E17-3024 [Google Scholar]
  7. 2019 (to appear). Néoveille, plateforme de détection, de description et de suivi des néologismes en onze langues. Néologica.
    [Google Scholar]
  8. Falk, Ingrid , Delphine Bernhard & Christophe Gérard
    2018 The Logoscope: A semi-automatic tool for detecting and documenting French new words from the linguistic project to the web interface. Research Report, Université Strasbourg. https://hal.archives-ouvertes.fr/hal-01896796 [accessed1 August 2018].
  9. Fischer, Roswitha
    1998Lexical change in present-day English: A corpus-based study of the motivation, institutionalization, and productivity of creative neologisms. Tübingen: Narr.
    [Google Scholar]
  10. Gérard, Christophe , Lauren Bruneau , Ingrid Falk , Delphine Bernhard & Ann-Lise Rosio
    2017 Le Logoscope : Observatoire des innovations lexicales en français contemporain. In Joaquín García Palacios , Goedele de Sterck , Daniel Linder , Jesús Torre del Rey , Miguel Sánchez Ibanez & Nava Maroto García (eds.), La neología en las lenguas Románicas: Recursos, estrategias y nuevas orientaciones. Frankfurt : Peter Lang. 339–356.
    [Google Scholar]
  11. Hamilton, William L. , Jure Leskovec & Dan Jurafsky
    2016 Cultural shift or linguistic drift? Comparing two computational models of semantic change. Proceedings of Conference on Empirical Methods on Natural Language Processing, Austin, Texas, USA, 1–5 November 2016. aclweb.org/anthology/D/D16/D16-1229.pdf [accessed1 March 2018]. 10.18653/v1/D16‑1229
    https://doi.org/10.18653/v1/D16-1229 [Google Scholar]
  12. Iakovleva, Tatiana
    2017 Automatic detection of neologisms in Russian newspaper corpora with Néoveille. Proceedings of the International Conference CORPUS LINGUISTICS – 2017, St Petersburg, 27–30 June 2017, 43–47. https://hal-univ-diderot.archives-ouvertes.fr/hal-01540995/document [accessed1 May 2018].
    [Google Scholar]
  13. Janssen, Maarten
    2005 NeoTrack: Semiautomatic neologism detection. APL Conference 2005, Lisboa, Portugal. maarten.janssenweb.net/index.php?action=publications [accessed15 March 2018].
    [Google Scholar]
  14. Jatowt, Adam & Kevin Duh
    2014 A framework for analysing semantic change of words across time. Proceedings of the 14th ACM/IEEE-CS Joint Conference on Digital Libraries, 229–238.
    [Google Scholar]
  15. Kerremans, Daphné
    2015A web of new words: A corpus-based study of the conventionalization process of English neologisms. Frankfurt am Main: Peter Lang. 10.3726/978‑3‑653‑04788‑2
    https://doi.org/10.3726/978-3-653-04788-2 [Google Scholar]
  16. Kerremans, Daphné , Susanne Stegmayr & Hans-Jörg Schmid
    2012 The NeoCrawler: Identifying and retrieving neologisms from the internet and monitoring on-going change. In Kathryn Allan & Justyna Robinson (eds.), Current methods in historical semantics, 59–96. Berlin: Mouton de Gruyter.
    [Google Scholar]
  17. Kerremans, Daphné & Jelena Prokić
    2018 Mining the web for new words: Semi-automatic neologism identification with the NeoCrawler. Anglia136(2). 239–268. 10.1515/ang‑2018‑0032
    https://doi.org/10.1515/ang-2018-0032 [Google Scholar]
  18. Labov, William
    1966The social stratification of English in New York City. Washington: Center for Applied Linguistics.
    [Google Scholar]
  19. 1980 The social origins of sound change. In William Labov (ed.), Locating language in time and space, 251–266. New York: Academic Press.
    [Google Scholar]
  20. 2001Principles of linguistic change. Volume II: Social factors. Oxford: Blackwell.
    [Google Scholar]
  21. Levenshtein, Vladimir I.
    1965 Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady10. 707–710.
    [Google Scholar]
  22. Lewandowski, Dirk
    2008 A three-year study on the freshness of web search engine databases. Journal of Information Science34(6). 817–831. 10.1177/0165551508089396
    https://doi.org/10.1177/0165551508089396 [Google Scholar]
  23. Liao, Xuanyi & Guang Cheng
    2016 Analysing the semantic change based on word embedding. InNatural language understanding and intelligent applications. Proceedings of the 5th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2016, and 24th International Conference on Computer Processing of Oriental Languages, ICCPOL 2016, Kunming, China, December 2–6, 2016, 213–223. Cham: Springer.
    [Google Scholar]
  24. Liu, Tsun-Jui , Shu-Kai Hsieh & Laurent Prevot
    2013 Observing features of PTT neologisms: A corpus-driven study with N-gram model. Proceedings of the Twenty-Fifth Conference on Computational Linguistics and Speech Processing (ROCLING 2013), 250–259.
    [Google Scholar]
  25. Megerdoomian, Karine & Ali Hadjarian
    2010 Mining and classification of neologisms in Persian blogs. Proceedings of the 2nd Workshop on Computational Approaches to Linguistic Creativity (HLT 2010), 6–13.
    [Google Scholar]
  26. Milroy, James & Lesley Milroy
    1985 Linguistic change, social network and speaker innovation. Journal of Linguistics21. 339–384. 10.1017/S0022226700010306
    https://doi.org/10.1017/S0022226700010306 [Google Scholar]
  27. Nevalainen, Terttu
    2000 Mobility, social networks and language change in Early Modern England. European Journal of English Studies4(3). 253–264. 10.1076/1382‑5577(200012)4:3;1‑S;FT253
    https://doi.org/10.1076/1382-5577(200012)4:3;1-S;FT253 [Google Scholar]
  28. Nevalainen, Terttu & Helena Raumolin-Brunberg
    2003Historical sociolinguistics: Language change in Tudor and Stuart England. London: Longman.
    [Google Scholar]
  29. Plag, Ingo
    1999Morphological productivity: Structural constraints in English derivation. Berlin/New York: Mouton de Gruyter. 10.1515/9783110802863
    https://doi.org/10.1515/9783110802863 [Google Scholar]
  30. Säily, Tanja, Eetu Mäkelä & Mika Hämäläinen
    2018 Explorations into the social contexts of neologism use in early English correspondence. Pragmatics & Cognition25(1). 29–48. [=this volume] 10.1075/pc.18001.sai
    https://doi.org/10.1075/pc.18001.sai [Google Scholar]
  31. Schmid, Hans-Jörg
    2016English morphology and word-formation: An introduction, 3rd revised and extended edition. Berlin: Erich Schmidt.
    [Google Scholar]
  32. Tagliamonte, Sali A. & Derek Denis
    2014 Expanding the transmission/diffusion dichotomy: Evidence from Canada. Language90(1). 90–136. 10.1353/lan.2014.0016
    https://doi.org/10.1353/lan.2014.0016 [Google Scholar]
  33. Torres-del-Rey, Jesús & Nava Maroto
    2014 Building the interface between experts and linguists in the detection and characterisation of neology in the field of neurosciences. Proceedings of the 4th International Workshop on Computational Terminology, Dublin, Ireland, August 2014, 64–67. https://aclanthology.info/papers/W14-4808/w14-4808 [accessed25 March 2018].
    [Google Scholar]
  34. Tournier, Jean
    1985Introduction Descriptive à la Lexicogénétique de l’Anglais Contemporain. Paris: Champion-Slatkine.
    [Google Scholar]
  35. Wilson, Lee
    2017 Google Freshness Algorithm: Everything you need to know. Search Engine Journal. https://www.searchenginejournal.com/google-algorithm-history/freshness-update/. Last accessedAugust 1, 2018.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/pc.00006.ker
Loading
/content/journals/10.1075/pc.00006.ker
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data-mining , innovation identification , lexical innovation , neologisms , string matching and webcrawler
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error