1887
Volume 29, Issue 1
  • ISSN 0929-0907
  • E-ISSN: 1569-9943
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Mercier and Sperber (MS) have ventured to undermine an age-old assumption in logic, namely the presence of premise-conclusion structures, in favor of two novel claims: that reasoning is an evolutionary product of a reason-intuiting module in the mind, and that theories of logic teach next to nothing about the mechanisms of how inferences are drawn in that module. The present paper begs to differ: logic is indispensable in formulating conceptions of cognitive elements of reasoning, and MS is no less exempt from taking notice of premise-conclusion structures than the commonplace theories of reasoning are. Our counterclaim is realized in terms of diagrammatic reasoning dating back to Charles Peirce’s pragmaticism. The upshot is that pragmatist logic restores the premise-conclusion structures in argumentation, supplants reason-intuition module with logical content, and validates good reasoning as an indispensable resource evident to all rational minds that claim ownership of reason and understanding.

Loading

Article metrics loading...

/content/journals/10.1075/pc.21002.pie
2023-02-02
2024-05-26
Loading full text...

Full text loading...

References

  1. Bellucci, Francesco & Ahti-Veikko Pietarinen
    2016 Existential graphs as an instrument of logical analysis: Part I. Alpha. The Review of Symbolic Logic9(2). 209–237. 10.1017/S1755020315000362
    https://doi.org/10.1017/S1755020315000362 [Google Scholar]
  2. 2017 Two dogmas of diagrammatic reasoning: A view from existential graphs. InKathleen A. Hull & Richard K. Atkins (eds.), Peirce on perception and reasoning: From icons to logic, 174–196. New York: Routledge.
    [Google Scholar]
  3. 2021 An analysis of existential graphs: Part II. Beta. Synthese1991. 7705–7726. 10.1007/s11229‑021‑03134‑3
    https://doi.org/10.1007/s11229-021-03134-3 [Google Scholar]
  4. 2022 Existential graphs: History and interpretation. InCornelis De Waal (ed.), Oxford handbook for Charles S. Peirce. Oxford: Oxford University Press.
    [Google Scholar]
  5. Beni, Majid & Ahti-Veikko Pietarinen
    2021 Aligning the free-energy principle with Peirce’s logic of science. European Journal for Philosophy of Science111. 94. 10.1007/s13194‑021‑00408‑y
    https://doi.org/10.1007/s13194-021-00408-y [Google Scholar]
  6. Bobrova, Angelina & Ahti-Veikko Pietarinen
    2019 Thoughts, things and logical guidance. InMohammad Shafiei & Ahti-Veikko Pietarinen (eds.), Peirce and Husserl: Mutual insights on logic, mathematics and cognition, 43–58. Dordrecht: Springer. 10.1007/978‑3‑030‑25800‑9_3
    https://doi.org/10.1007/978-3-030-25800-9_3 [Google Scholar]
  7. 2020a Two cognitive systems, two implications, and selection tasks. InJavier Camara & Martin Steffen (eds.), Software engineering and formal methods (Lecture notes in computer science 12226), 195–205. Cham: Springer. 10.1007/978‑3‑030‑57506‑9_15
    https://doi.org/10.1007/978-3-030-57506-9_15 [Google Scholar]
  8. 2020b Two implications and dual-process theories of reasoning. InAhti-Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James Corter & Sven Linker (eds.), Diagrammatic representation and inference (Lecture notes in computer science 12169), 404–407. Cham: Springer. 10.1007/978‑3‑030‑54249‑8_19
    https://doi.org/10.1007/978-3-030-54249-8_19 [Google Scholar]
  9. Carroll, Lewis
    1895 What the Tortoise said to Achilles. Mind4(14). 278–280. 10.1093/mind/IV.14.278
    https://doi.org/10.1093/mind/IV.14.278 [Google Scholar]
  10. Champagne, Marc & Ahti-Veikko Pietarinen
    2020 Why images cannot be arguments, but moving ones might. Argumentation34(2). 207–236. 10.1007/s10503‑019‑09484‑0
    https://doi.org/10.1007/s10503-019-09484-0 [Google Scholar]
  11. Chater, Nick & Oaksford, Mike
    2018 The enigma is not entirely dispelled: A review of Mercier and Sperber’s “The enigma of reason”. Mind & Language33(5). 525–532. 10.1111/mila.12181
    https://doi.org/10.1111/mila.12181 [Google Scholar]
  12. Cruz, Nicole, Jean Baratgin, Mike Oaksford & David E. Over
    2015 Bayesian reasoning with ifs and ands and ors. Frontiers in Psychology61. 192. 10.3389/fpsyg.2015.00192
    https://doi.org/10.3389/fpsyg.2015.00192 [Google Scholar]
  13. Dutilh Novaes, Catarina
    2018 The enduring enigma of reason. Mind & Language33(5). 513–524. 10.1111/mila.12174
    https://doi.org/10.1111/mila.12174 [Google Scholar]
  14. Friston, Karl
    2010 The free-energy principle: A unified brain theory?Nature Reviews Neuroscience111. 127–138. 10.1038/nrn2787
    https://doi.org/10.1038/nrn2787 [Google Scholar]
  15. Haydon, Nathan & Ahti-Veikko Pietarinen
    2021 Residuation in Peirce’s existential graphs. InAmrita Basu, Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo & Petrucio Viana (eds.), Diagrammatic representation and inference (Lecture notes in computer science 12909), 229–237. Cham: Springer. 10.1007/978‑3‑030‑86062‑2_21
    https://doi.org/10.1007/978-3-030-86062-2_21 [Google Scholar]
  16. Hull, Kathleen A.
    2017 The iconic Peirce: Geometry, spatial intuition, and visual imagination. InKathleen A. Hull & Richard Kenneth Atkins (eds.), Peirce on perception and reasoning: From icons to logic, 147–173. New York: Routledge. 10.4324/9781315444642‑12
    https://doi.org/10.4324/9781315444642-12 [Google Scholar]
  17. Johnson-Laird, Paul N.
    2002 Peirce, logic diagrams, and the elementary operations of reasoning. Thinking and Reasoning8(1). 69–95. 10.1080/13546780143000099
    https://doi.org/10.1080/13546780143000099 [Google Scholar]
  18. Karttunen, Lauri
    2015 From natural logic to natural reasoning. InAlexander Gelbukh (ed.), Computational linguistics and intelligent text processing (Lecture notes in computer science 9041), 295–309. Cham: Springer. 10.1007/978‑3‑319‑18111‑0_23
    https://doi.org/10.1007/978-3-319-18111-0_23 [Google Scholar]
  19. Ludlow, Peter & Sašo Živanović
    2022Language, form, and logic: In pursuit of natural logic’s Holy Grail. Oxford: Oxford University Press. 10.1093/oso/9780199591534.001.0001
    https://doi.org/10.1093/oso/9780199591534.001.0001 [Google Scholar]
  20. Ma, Minghui & Ahti-Veikko Pietarinen
    2016 Proof analysis of Peirce’s alpha system of graphs. Studia Logica105(3). 625–647. 10.1007/s11225‑016‑9703‑y
    https://doi.org/10.1007/s11225-016-9703-y [Google Scholar]
  21. 2017 Gamma graph calculi for modal logics. Synthese195(8). 3621–3650. 10.1007/s11229‑017‑1390‑3
    https://doi.org/10.1007/s11229-017-1390-3 [Google Scholar]
  22. 2018 A weakening of alpha graphs: Quasi-boolean algebras. InPeter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah PerezKriz & Francesco Bellucci (eds.), Diagrammatic representation and inference (Lecture notes in artificial intelligence 10871), 549–564. Cham: Springer. 10.1007/978‑3‑319‑91376‑6_50
    https://doi.org/10.1007/978-3-319-91376-6_50 [Google Scholar]
  23. 2019 Peirce’s calculi for classical propositional logic. The Review of Symbolic Logic13(3). 509–540. 10.1017/S1755020318000187
    https://doi.org/10.1017/S1755020318000187 [Google Scholar]
  24. Mercier, Hugo & Dan Sperber
    2011 Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences34(2). 57–111. 10.1017/S0140525X10000968
    https://doi.org/10.1017/S0140525X10000968 [Google Scholar]
  25. 2017The enigma of reason: A new theory of human understanding. Cambridge, MA: Harvard University Press.
    [Google Scholar]
  26. Øhrstrøm, Peter
    1997 Peirce and the quest for gamma graphs. InDickson Lukose, Harry Delugach, Mary Keeler, Leroy Searle & John Sowa (eds.), Conceptual structures: fulfilling Peirce’s dream (Lecture notes in artificial intelligence 1257), 357–370. Cham: Springer. 10.1007/BFb0027883
    https://doi.org/10.1007/BFb0027883 [Google Scholar]
  27. Peirce, Charles S.
    1931–1958Collected papers of Charles S. Peirce (vols.1–81). Cambridge, MA: Belknap Press of Harvard University Press. Cited by volume and paragraph number.
    [Google Scholar]
  28. 1967 Manuscripts in the Houghton Library of Harvard University, as identified by Richard Robin. Annotated catalogue of the papers of Charles S. Peirce. Amherst. Cited by manuscript number.
    [Google Scholar]
  29. 1982Writings of Charles S. Peirce. A chronological edition. Peirce Edition Project, vol. 1 (1857–1866). Bloomington & Indianapolis: Indiana University Press.
    [Google Scholar]
  30. 1993Writings of Charles S. Peirce. A chronological edition. Peirce Edition Project, vol. 5 (1884–1886). Bloomington & Indianapolis: Indiana University Press.
    [Google Scholar]
  31. 1993The essential Peirce1. Ed. by the Peirce Edition Project. Bloomington: Indiana University Press.
    [Google Scholar]
  32. 1998The essential Peirce2. Ed. by the Peirce Edition Project. Bloomington: Indiana University Press.
    [Google Scholar]
  33. 2019–2022Logic of the future: Writings on existential graphs (vol.21), edited byAhti-Veikko Pietarinen. Berlin: Mouton de Gruyter.
    [Google Scholar]
  34. Pietarinen, Ahti-Veikko
    2003 Games as formal tools versus games as explanations in logic and science. Foundations of Science8(4). 317–364. 10.1023/A:1026319711838
    https://doi.org/10.1023/A:1026319711838 [Google Scholar]
  35. 2006Signs of logic. Peircean themes on the philosophy of language, games, and communication. Dordrecht: Springer.
    [Google Scholar]
  36. 2011 Existential graphs: What the diagrammatic logic of cognition might look like. History and Philosophy of Logic32(3). 265–281. 10.1080/01445340.2011.555506
    https://doi.org/10.1080/01445340.2011.555506 [Google Scholar]
  37. 2013 Pragmaticism revisited: Co-evolution and the methodology of social sciences. Cognitio14(1). 123–136.
    [Google Scholar]
  38. 2014 Logical and linguistic games from Peirce to Grice to Hintikka. Teorema331. 121–136.
    [Google Scholar]
  39. 2015a Exploring the beta quadrant. Synthese1921. 941–970. 10.1007/s11229‑015‑0677‑5
    https://doi.org/10.1007/s11229-015-0677-5 [Google Scholar]
  40. 2015b Two papers on existential graphs by Charles S. Peirce. Synthese1921. 881–922. 10.1007/s11229‑014‑0498‑y
    https://doi.org/10.1007/s11229-014-0498-y [Google Scholar]
  41. 2017 Is there a general diagram concept?InSybille Krämer & Christina Ljundberg (eds.), Thinking in diagrams: The semiotic basis of human cognition, 121–138. Berlin: de Gruyter.
    [Google Scholar]
  42. 2018 Conjectures and abductive reasoning in games. Journal of Applied Logics5(5). 1121–1143.
    [Google Scholar]
  43. 2021 Abduction and diagrams. Logic Journal of the IGPL29(4). 447–468. 10.1093/jigpal/jzz034
    https://doi.org/10.1093/jigpal/jzz034 [Google Scholar]
  44. Pietarinen, Ahti-Veikko & Francesco Bellucci
    2016 H. Paul Grice’s lecture notes on Charles S. Peirce’s theory of signs. International Review of Pragmatics81. 82–129. 10.1163/18773109‑00701006
    https://doi.org/10.1163/18773109-00701006 [Google Scholar]
  45. 2017 Habits of reasoning. On the grammar and critics of logical habits. InDonna E. West & Myrene Anderson (eds.), Habit: Before and beyond consciousness, 265–282. Dordrecht: Springer.
    [Google Scholar]
  46. Pietarinen, Ahti-Veikko, Francesco Bellucci, Angelina Bobrova, Mohammad Shafiei & Nathan Haydon
    2020 The blot. InAhti-Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James Corter & Sven Linker (eds.), Diagrammatic representation and inference (Lecture notes in computer science 12169), 225–238. Cham: Springer. 10.1007/978‑3‑030‑54249‑8_18
    https://doi.org/10.1007/978-3-030-54249-8_18 [Google Scholar]
  47. Pietarinen, Ahti-Veikko & Majid Beni
    2021 Active inference and abduction. Biosemiotics141. 499–517. 10.1007/s12304‑021‑09432‑0
    https://doi.org/10.1007/s12304-021-09432-0 [Google Scholar]
  48. Read, Stephen
    1995Thinking about logic: An introduction to the philosophy of logic. Oxford: Oxford University Press.
    [Google Scholar]
  49. Roberts, Don D.
    1973The existential graphs of Charles S. Peirce. Berlin: Mouton de Gruyter. 10.1515/9783110226225
    https://doi.org/10.1515/9783110226225 [Google Scholar]
  50. Sperber, Daniel & Hugo Mercier
    2018 Why a modular approach to reason?Mind & Language33(5). 533–541. 10.1111/mila.12208
    https://doi.org/10.1111/mila.12208 [Google Scholar]
  51. Stenning, Keith & Michael Van Lambalgen
    2008Human reasoning and cognitive science. Cambridge, MA: MIT Press. 10.7551/mitpress/7964.001.0001
    https://doi.org/10.7551/mitpress/7964.001.0001 [Google Scholar]
  52. Sterelny, Kim
    2018 Why reason? Hugo Mercier’s and Dan Sperber’s “The enigma of reason: A new theory of human understanding”. Mind & Language33(5). 502–512. 10.1111/mila.12182
    https://doi.org/10.1111/mila.12182 [Google Scholar]
  53. Sugden, Roger
    2003 The logic of team reasoning. Philosophical Explorations61. 165–181. 10.1080/10002003098538748
    https://doi.org/10.1080/10002003098538748 [Google Scholar]
  54. Tversky, Amos & Daniel Kahneman
    1983 Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychology Review901. 293–315. 10.1037/0033‑295X.90.4.293
    https://doi.org/10.1037/0033-295X.90.4.293 [Google Scholar]
  55. Zeman, Jay
    1964 The graphical logic of C. S. Peirce. Chicago: University of Chicago PhD dissertation.
http://instance.metastore.ingenta.com/content/journals/10.1075/pc.21002.pie
Loading
/content/journals/10.1075/pc.21002.pie
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error