Volume 16, Issue 1
  • ISSN 1877-9751
  • E-ISSN: 1877-976X
Buy:$35.00 + Taxes


This article looks into the interface of temporality and quantification. Drawing on the principles of Cognitive Linguistics, we use experimental as well as corpus methods to provide evidence on how the conceptual organisation and linguistic coding of content can play a role in meaning construction. With that broad agenda in mind, a major objective is to shed light on the construct of conventionalisation. For that purpose, construal coding variants are examined with a focus on nominal phrases that express time quantities. The examination involves two construal types (termed “cumulative” and “fractional”) that differ primarily in their prominence configurations, across three granularity levels of time conceptualisation. Our main finding – that the fractional and cumulative constructions are asymmetrically conventionalised – is contextualised through a qualitative analysis of naturally-occurring data to identify additional language use patterns and offer explanatory hypotheses.


Article metrics loading...

Loading full text...

Full text loading...


  1. Alverson, H.
    (1994) Semantics and experience: Universal metaphors of time in English, Mandarin, Hindi, and Sesotho. Baltimore: Johns Hopkins University Press.
    [Google Scholar]
  2. Barlow, M. , & Kemmer, S.
    (Eds.) (2000) Usage-based models of language. Stanford, CA: CSLI Publications.
    [Google Scholar]
  3. Bybee, J.
    (2006) From usage to grammar: the mind’s response to repetition. Language, 82(4), 711–733.10.1353/lan.2006.0186
    https://doi.org/10.1353/lan.2006.0186 [Google Scholar]
  4. Casini, L. , & Macar, F.
    (1997) Effects of attention manipulation on perceived duration and intensity in the visual modality. Memory and Cognition, 25(6), 812–818.10.3758/BF03211325
    https://doi.org/10.3758/BF03211325 [Google Scholar]
  5. Croft, W. , & Cruse, D. A.
    (2004) Cognitive Linguistics. Cambridge: Cambridge University Press.10.1017/CBO9780511803864
    https://doi.org/10.1017/CBO9780511803864 [Google Scholar]
  6. Davison, M. , & McCarthy, D.
    (1988) The matching law: A research review. Hillsdale, NJ: Erlbaum.
    [Google Scholar]
  7. Deckert, M. , & Pęzik, P.
    (2014) Degrees of propositionality in construals of time quantities. Research in Language, 12(4), 341–353.10.1515/rela‑2015‑0003
    https://doi.org/10.1515/rela-2015-0003 [Google Scholar]
  8. Dehaene, S. , Dehaene-Lambertz, G. , & Cohen, L.
    (1998) Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.10.1016/S0166‑2236(98)01263‑6
    https://doi.org/10.1016/S0166-2236(98)01263-6 [Google Scholar]
  9. Evans, V.
    (2004) The structure of time: Language, meaning and temporal cognition. Amsterdam/Philadelphia: John Benjamins.10.1075/hcp.12
    https://doi.org/10.1075/hcp.12 [Google Scholar]
  10. Fedden, S. , & Boroditsky, L.
    (2012) Spatialization of time in Mian. Frontiers in Psychology, 3, 485.
    [Google Scholar]
  11. Flaherty, M.
    (1999) A watched pot: How we experience time. New York, NY: New York University Press.
    [Google Scholar]
  12. Gallistel, C. R.
    (1990) The organization of learning. Cambridge, MA: MIT Press.
    [Google Scholar]
  13. (2000) Time, rate, and conditioning. Psychological Review, 107(2), 289–344.10.1037/0033‑295X.107.2.289
    https://doi.org/10.1037/0033-295X.107.2.289 [Google Scholar]
  14. Gallistel, C. R. , & Gelman, R.
    (2000) Non-verbal numerical cognition: from reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.10.1016/S1364‑6613(99)01424‑2
    https://doi.org/10.1016/S1364-6613(99)01424-2 [Google Scholar]
  15. Gentner, D. , Imai, M. , & Boroditsky, L.
    (2002) As time goes by: Evidence for two systems in processing space→time metaphors. Language and Cognitive Processes, 17(5), 537–565.10.1080/01690960143000317
    https://doi.org/10.1080/01690960143000317 [Google Scholar]
  16. Ivry, R. B. , & Hazeltine, R. E.
    (1995) Perception and production of temporal intervals across a range of durations: Evidence of a common timing mechanism. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 3–18.
    [Google Scholar]
  17. Jones, L. A. , Poliakoff, E. , & Wells, J.
    (2009) Good vibrations: Human interval timing in the vibrotactile modality. Quarterly Journal of Experimental Psychology, 62(11), 2171–2186.10.1080/17470210902782200
    https://doi.org/10.1080/17470210902782200 [Google Scholar]
  18. Langacker, R. W.
    (1987) Foundations of cognitive grammar. Vol. 1: Theoretical prerequisites. Stanford, CA: Stanford University Press.
    [Google Scholar]
  19. (2000) A dynamic usage-based model. In M. Barlow & S. Kemmer (Eds.), Usage-based models of language (pp.1–63). Stanford, CA: CSLI Publications.
    [Google Scholar]
  20. (2008) Cognitive grammar: A basic introduction. New York: Oxford University Press.10.1093/acprof:oso/9780195331967.001.0001
    https://doi.org/10.1093/acprof:oso/9780195331967.001.0001 [Google Scholar]
  21. Leon, M. I. , & Shadlen, M. N.
    (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38(2), 317–327.10.1016/S0896‑6273(03)00185‑5
    https://doi.org/10.1016/S0896-6273(03)00185-5 [Google Scholar]
  22. Matthews, W. J.
    (2011) How do changes in speed affect the perception of duration?Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1617–1627.
    [Google Scholar]
  23. Matthews, W. J. , Stewart, N. , & Wearden, J. H.
    (2011) Stimulus intensity and the perception of duration. Journal of Experimental Psychology: Human Perception and Performance, 37(1), 303–313.
    [Google Scholar]
  24. Núñez, R. , Motz, B. , & Teuscher, U.
    (2006) Time after time: The psychological reality of the ego- and time-reference-point distinction in metaphorical construals of time. Metaphor and Symbol, 21(3), 133–146.10.1207/s15327868ms2103_1
    https://doi.org/10.1207/s15327868ms2103_1 [Google Scholar]
  25. Núñez, R. , & Sweetser, E.
    (2006) With the future behind them: convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive Science, 30(3), 401–450.10.1207/s15516709cog0000_62
    https://doi.org/10.1207/s15516709cog0000_62 [Google Scholar]
  26. Pariyadath, V. , & Eagleman, D. M.
    (2007) The effect of predictability on subjective duration. PLoS One, 2(11), e1264.10.1371/journal.pone.0001264
    https://doi.org/10.1371/journal.pone.0001264 [Google Scholar]
  27. (2008) Brief subjective durations contract with repetition. Journal of Vision, 8(16), 1–6.10.1167/8.16.11
    https://doi.org/10.1167/8.16.11 [Google Scholar]
  28. Pęzik, P.
    (2012) Wyszukiwarka PELCRA dla danych NKJP. In A. Przepiórkowski , M. Bańko , R. L. Górski , & B. Lewandowska-Tomaszczyk (Eds.), Narodowy Korpus Języka Polskiego (pp.253–273). Warsaw: PWN.
    [Google Scholar]
  29. Rao, S. M. , Mayer, A. R. , & Harrington, D. L.
    (2001) The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317–323.10.1038/85191
    https://doi.org/10.1038/85191 [Google Scholar]
  30. Tse, P. U. , Intriligator, J. , Rivest, J. , & Cavanagh, P.
    (2004) Attention and the subjective expansion of time. Perception & Psychophysics, 66, 1171–1189.10.3758/BF03196844
    https://doi.org/10.3758/BF03196844 [Google Scholar]
  31. Walsh, V.
    (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.10.1016/j.tics.2003.09.002
    https://doi.org/10.1016/j.tics.2003.09.002 [Google Scholar]
  32. Xuan, B. , Zhang, D. , He, S. , & Chen, X.
    (2007) Larger stimuli are judged to last longer. Journal of Vision, 7(10), 1–5.10.1167/7.10.2
    https://doi.org/10.1167/7.10.2 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error