Volume 36, Issue 1
  • ISSN 0213-2028
  • E-ISSN: 2254-6774
Buy:$35.00 + Taxes



This article introduces a text mining tool that can automatically extract information using Hyland’s analysis model as a theoretical framework to analyse the use and characteristics of metadiscourse in large quantities of academic texts. To verify its validity, we present the results obtained using this tool on various bachelor’s degree theses with a particular focus on the field of engineering. Our results on a 6.9 million-word corpus extracted from 680 bachelor’s theses available online show that interactive metadiscourse markers are prevalent in engineering bachelor’s theses as well as in the authors’ metadiscourse patterns. In addition, we compared our results with previous research on metadiscourse markers. Our study can be used to identify the usage of various types of metadiscourse markers during the production of texts and for the development of software applications involving quantitative linguistic methods for the production of academic texts.


Article metrics loading...

Loading full text...

Full text loading...


  1. Ädel, A.
    (2006) Metadiscourse in L1 and L2 English. John Benjamins. 10.1075/scl.24
    https://doi.org/10.1075/scl.24 [Google Scholar]
  2. Akbarpour, M., & Sadeghoghli, H.
    (2015) The study on Ken Hyland’s interactional model in OUP publications. International Journal of Language and Linguistics, 3(4), 266–270. 10.11648/j.ijll.20150304.21
    https://doi.org/10.11648/j.ijll.20150304.21 [Google Scholar]
  3. Alexa, M., & Zuell, C.
    (2000) Text analysis software: Commonalities, differences and limitations: The results of a review. Quality and Quantity, 34(3), 299–321. 10.1023/A:1004740203542
    https://doi.org/10.1023/A:1004740203542 [Google Scholar]
  4. Ananiadou, S., & McNaught, J.
    (2005) Text mining for biology and biomedicine. Artech House.
    [Google Scholar]
  5. Anthony, L.
    (2012) AntConc (Version 3.3.5) [computer software]. Waseda University. Available fromwww.antlab.sci.waseda.ac.jp/
    [Google Scholar]
  6. Anthony
    Anthony (2013) A critical look at software tools in corpus linguistics. Linguistic Research30(2), 141–161. 10.17250/khisli.30.2.201308.001
    https://doi.org/10.17250/khisli.30.2.201308.001 [Google Scholar]
  7. Azorín, F., & Sánchez-Crespo, J. L.
    (1986) Métodos y aplicaciones del muestreo [sampling methods and applications]. Alianza.
    [Google Scholar]
  8. Barlow, M.
    (2000) MonoConc Pro (Version 2.2) [computer software]. Available fromwww.athel.com/mono.html
    [Google Scholar]
  9. Behnam, B., & Mollanaghizadeh, N.
    (2015) A comparative study of metadiscourse markers in some selected news programs on VOA: The case of regular English programs vs. special English programs. Modern Journal of Language Teaching Methods, 5(1), 242–255. 10.22067/LJ.V8I15.36262
    https://doi.org/10.22067/LJ.V8I15.36262 [Google Scholar]
  10. Breeze, R.
    (2016) Negotiating alignment in newspaper editorials: The role of concur-counter patterns. Pragmatics, 26(1), 1–19. 10.1075/prag.26.1.01bre
    https://doi.org/10.1075/prag.26.1.01bre [Google Scholar]
  11. Cheaffer, R. L., Mendenhall, W., & Ott, L.
    (2007) Elementos de muestreo (6th ed.). [elements of sampling]. Grupo Editorial Iberoamérica.
    [Google Scholar]
  12. Cohen, A. M., & Hersh, W. R.
    (2005) A survey of current work in biomedical text mining. Briefings in Bioinformatics, 6(1), 57–71. 10.1093/bib/6.1.57
    https://doi.org/10.1093/bib/6.1.57 [Google Scholar]
  13. Crismore, A.
    (1983) Metadiscourse: What it is and how it is used in school and non-school social science texts. Retrieved fromhttps://books.google.es/books?id=NfHmnAAACAAJ
    [Google Scholar]
  14. Crismore, A., & Farnsworth, R.
    (1990) Metadiscourse in popular and professional science discourse. InW. Nash (Ed.), The writing scholar: Studies in the language and conventions of academic discourse (pp.188–136). Sage.
    [Google Scholar]
  15. De la Calle, G., García-Remesal, M., Nkumu-Mbomio, N., Kulikowski, C., & Maojo, V. M.
    (2012) e-MIR2: A public online inventory of medical informatics resources. BMC Medical Informatics and Decision Making, 12(1), 82–83. 10.1186/1472‑6947‑12‑82
    https://doi.org/10.1186/1472-6947-12-82 [Google Scholar]
  16. Hyland, K.
    (1998) Persuasion and context: The pragmatics of academic metadiscourse. Journal of Pragmatics, 30(4), 437–455. 10.1016/S0378‑2166(98)00009‑5
    https://doi.org/10.1016/S0378-2166(98)00009-5 [Google Scholar]
  17. (1999) Talking to students: metadiscourse in introductory course books. English for Specific Purposes, 18(1), 3–26. 10.1016/S0889‑4906(97)00025‑2
    https://doi.org/10.1016/S0889-4906(97)00025-2 [Google Scholar]
  18. (2005) Metadiscourse: Exploring interaction in writing. Bloomsbury Publishing. 10.5040/9781350063617
    https://doi.org/10.5040/9781350063617 [Google Scholar]
  19. (2010) Metadiscourse: Mapping interactions in academic writing. Nordic Journal of English Studies, 9(2), 125–143. 10.35360/njes.220
    https://doi.org/10.35360/njes.220 [Google Scholar]
  20. Hyland, K., & Tse, P.
    (2004) Metadiscourse in academic writing: A reappraisal. Applied Linguistics, 25(2), 156–177. 10.1093/applin/25.2.156
    https://doi.org/10.1093/applin/25.2.156 [Google Scholar]
  21. Ivorra Pérez, F. M.
    (2014) Cultural values and their correlation with interactional metadiscourse strategies in Spanish and US business websites. ATLANTIS Journal of the Spanish Association of Anglo-American Studies, 36(2), 73–95.
    [Google Scholar]
  22. Jiang, F. K., & Hyland, K.
    (2017) Metadiscursive nouns: Interaction and cohesion in abstract moves. English for Specific Purposes, 461, 1–14. 10.1016/j.esp.2016.11.001
    https://doi.org/10.1016/j.esp.2016.11.001 [Google Scholar]
  23. Jin, X., & Shang, Y.
    (2016) Analyzing metadiscourse in the English abstracts of BA theses. Journal of Language Teaching & Research, 7(1), 210–215. 10.17507/jltr.0701.24
    https://doi.org/10.17507/jltr.0701.24 [Google Scholar]
  24. Kilgarriff, A., & Grefenstette, G.
    (2003) Introduction to the special issue on the web as corpus. Computational Linguistics, 29(3), 333–347. 10.1162/089120103322711569
    https://doi.org/10.1162/089120103322711569 [Google Scholar]
  25. Kuhi, D., & Mojood, M.
    (2014) Metadiscourse in newspaper genre: A cross-linguistic study of English and Persian editorials. Procedia – Social and Behavioral Sciences, 981, 1046–1055. 10.1016/j.sbspro.2014.03.515
    https://doi.org/10.1016/j.sbspro.2014.03.515 [Google Scholar]
  26. Kuteeva, M., & Mauranen, A.
    (2018) Digital academic discourse: Texts and contexts. Introduction. Discourse, Context & Media, 241, 1–7. 10.1016/j.dcm.2018.06.001
    https://doi.org/10.1016/j.dcm.2018.06.001 [Google Scholar]
  27. Le, E.
    (2004) Active participation within written argumentation: Metadiscourse and editorialist’s authority. Journal of Pragmatics, 36(4), 687–714. 10.1016/S0378‑2166(03)00032‑8
    https://doi.org/10.1016/S0378-2166(03)00032-8 [Google Scholar]
  28. Lee, J. J., & Casal, J. E.
    (2014) Metadiscourse in results and discussion chapters: A cross-linguistic analysis of English and Spanish thesis writers in engineering. System, 46(3), 39–54. 10.1016/j.system.2014.07.009
    https://doi.org/10.1016/j.system.2014.07.009 [Google Scholar]
  29. Lee, J. J., & Deakin, L.
    (2016) Interactions in L1 and L2 undergraduate student writing: Interactional metadiscourse in successful and less-successful argumentative essays. Journal of Second Language Writing, 331, 21–34. 10.1016/j.jslw.2016.06.004
    https://doi.org/10.1016/j.jslw.2016.06.004 [Google Scholar]
  30. Lin, K. L., & Evans, S.
    (2012) Structural patterns in empirical research articles: A cross-disciplinary study. English for Specific Purposes, 31(3), 150–160. 10.1016/j.esp.2011.10.002
    https://doi.org/10.1016/j.esp.2011.10.002 [Google Scholar]
  31. Livingstone, S., & Lunt, P.
    (2013) Mediated frameworks for participation. InM. Böck & N. Pachler (Eds.), Multimodality and Social Semiosis (pp.79–88). Routledge.
    [Google Scholar]
  32. Mauranen, A.
    (2010) Discourse reflexivity – A discourse universal?Nordic Journal of English Studies, 9(2), 13–40. 10.35360/njes.216
    https://doi.org/10.35360/njes.216 [Google Scholar]
  33. McGrath, L., & Kuteeva, M.
    (2012) Stance and engagement in pure mathematics research articles: Linking discourse features to disciplinary practices. English for Specific Purposes, 31(3), 161–173. 10.1016/j.esp.2011.11.002
    https://doi.org/10.1016/j.esp.2011.11.002 [Google Scholar]
  34. Mur Dueñas, P.
    (2007) ‘I/we Focus on…’: A cross-cultural analysis of self-mentions in business management research articles. Journal of English for Academic Purposes, 6(2), 143–162. 10.1016/j.jeap.2007.05.002
    https://doi.org/10.1016/j.jeap.2007.05.002 [Google Scholar]
  35. (2011) An intercultural analysis of metadiscourse features in research articles written in English and in Spanish. Journal of Pragmatics, 43(12), 3068–3079. 10.1016/j.pragma.2011.05.002
    https://doi.org/10.1016/j.pragma.2011.05.002 [Google Scholar]
  36. Orgeira-Crespo, P., Míguez-Álvarez, C., Cuevas-Alonso, M., Doval-Ruiz, M. A.
    (2020) Decision algorithm for the automatic determination of the use of non-inclusive terms in academic texts. Publications, 8(3), 41. 10.3390/publications8030041
    https://doi.org/10.3390/publications8030041 [Google Scholar]
  37. Saidian, S., & Jalilifar, A.
    (2016) “Mayhem! Absolute Mayhem!” Exploring the promotional metadiscursive features in the sportscasts of the 2014 FIFA World Cup semifinal between Brazil and Germany. Discourse, Context and Media, 141, 9–17. 10.1016/j.dcm.2016.08.001
    https://doi.org/10.1016/j.dcm.2016.08.001 [Google Scholar]
  38. Saki, M.
    (2019) Metadiscourse and stance-taking in prefaces: A diachronic analysis. InS. Carter-Thomas & C. E. Hamilton (Eds.), Science, Systemic Functional Linguistics and Language Change: A Festschrift for David Banks (pp.121–139). Cambridge Scholars Publishing.
    [Google Scholar]
  39. Salager-Meyer, F.
    (1994) Hedges and textual communicative function in medical English written discourse. English for Specific Purposes, 13(2), 149–170. 10.1016/0889‑4906(94)90013‑2
    https://doi.org/10.1016/0889-4906(94)90013-2 [Google Scholar]
  40. Scott, M.
    (2012) WordSmith Tools (Version 5.0) [Computer Software]. Available fromwww.lexically.net/software/index.htm
    [Google Scholar]
  41. Shokouhi, H., Norwood, C. & Soltani, S.
    (2015) Evidential in Persian editorials. Discourse Studies, 17(4), 449–466. 10.1177/1461445615578964
    https://doi.org/10.1177/1461445615578964 [Google Scholar]
  42. Sorahi, M., & Shabani, M.
    (2016) Metadiscourse in Persian and English research article introductions. Theory and Practice in Language Studies, 6(6), 1175–1182. 10.17507/tpls.0606.06
    https://doi.org/10.17507/tpls.0606.06 [Google Scholar]
  43. Suau Jiménez, F.
    (2015) Quality translation of hotel websites: Interpersonal discourse and customer’s engagement. Onomázein, 321, 152–170. 10.7764/onomazein.32.8
    https://doi.org/10.7764/onomazein.32.8 [Google Scholar]
  44. Tajeddin, Z., & Alemi, M.
    (2012) L2 learners’ use of metadiscourse markers in online discussion forums. Issues in Language Teaching (ILT), 1(1), 93–121.
    [Google Scholar]
  45. Thompson, S. K.
    (1992) Sampling. John Wiley & Sons.
    [Google Scholar]
  46. Vande Kopple, W. J.
    (1985) Some exploratory discourse on metadiscourse. College Composition and Communication, 361, 63–94. 10.2307/357609
    https://doi.org/10.2307/357609 [Google Scholar]
  47. (2002) Metadiscourse, discourse, and issues in composition and rhetoric. InF. Barton & C. Stygall (Eds.), Discourse studies in composition (pp.91–113). Hampton Press.
    [Google Scholar]
  48. Wei, J., Li, Y., Zhou, T., & Gong, Z.
    (2016) Studies on metadiscourse since the 3rd millennium. Journal of Education and Practice, 7(9), 194–204.
    [Google Scholar]
  49. Xiao, W., & Sun, S.
    (2020) Dynamic lexical features of PhD theses across disciplines: A text mining approach. Journal of Quantitative Linguistics, 27(2), 114–133. 10.1080/09296174.2018.1531618
    https://doi.org/10.1080/09296174.2018.1531618 [Google Scholar]
  50. Yoon, H., & Römer, U.
    (2020) Quantifying disciplinary voices: An automated approach to interactional metadiscourse in successful student writing. Written Communication, 10.1177/0741088319898672
    https://doi.org/10.1177/0741088319898672 [Google Scholar]
  51. Zhang, M.
    (2019) Exploring personal metadiscourse markers across speech and writing using cluster analysis. Journal of Quantitative Linguistics, 26(4), 267–286. 10.1080/09296174.2018.1480856
    https://doi.org/10.1080/09296174.2018.1480856 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error