1887
image of Derivation predicting inflection
USD
Buy:$35.00 + Taxes

Abstract

Abstract

In this paper, we investigate the value of derivational information in predicting the inflectional behavior of lexemes. We focus on Latin, for which large-scale data on both inflection and derivation are easily available. We train boosting tree classifiers to predict the inflection class of verbs and nouns with and without different pieces of derivational information. For verbs, we also model inflectional behavior in a word-based fashion, training the same type of classifier to predict wordforms given knowledge of other wordforms of the same lexemes. We find that derivational information is indeed helpful, and document an asymmetry between the beginning and the end of words, in that the final element in a word is highly predictive, while prefixes prove to be uninformative. The results obtained with the word-based methodology also allow for a finer-grained description of the behavior of different pairs of cells.

Loading

Article metrics loading...

/content/journals/10.1075/sl.21002.bon
2022-01-21
2022-05-23
Loading full text...

Full text loading...

References

  1. Ackerman, Farrell, James P. Blevins & Robert Malouf
    2009 Parts and wholes: Patterns of relatedness in complex morphological systems and why they matter. InJames P. Blevins & Juliette Blevins (eds.), Analogy in grammar: Form and acquisition, 54–82. Oxford: Oxford University Press. 10.1093/acprof:oso/9780199547548.003.0003
    https://doi.org/10.1093/acprof:oso/9780199547548.003.0003 [Google Scholar]
  2. Ackerman, Farrell & Robert Malouf
    2013 Morphological organization: The low conditional entropy conjecture. Language89. 429–464. 10.1353/lan.2013.0054
    https://doi.org/10.1353/lan.2013.0054 [Google Scholar]
  3. Albright, Adam C. & Bruce P. Hayes
    2003 Rules vs. analogy in English past tenses: A computational/experimental study. Cognition90. 119–161. 10.1016/S0010‑0277(03)00146‑X
    https://doi.org/10.1016/S0010-0277(03)00146-X [Google Scholar]
  4. Aronoff, Mark
    1994Morphology by itself: Stems and inflectional classes. Cambridge: MIT press.
    [Google Scholar]
  5. Beniamine, Sacha
    2018 Classifications flexionnelles. Étude quantitative des structures de paradigmes. Paris: Université Sorbonne Paris Cité-Université Paris Diderot PhD dissertation.
  6. Beniamine, Sacha, Olivier Bonami & Benoît Sagot
    2017 Inferring inflection classes with description length. Journal of Language Modelling5(3). 465–525.
    [Google Scholar]
  7. Blevins, James P.
    2016Word and paradigm morphology. Oxford: Oxford University Press. 10.1093/acprof:oso/9780199593545.001.0001
    https://doi.org/10.1093/acprof:oso/9780199593545.001.0001 [Google Scholar]
  8. Bonami, Olivier & S. Beniamine
    2016 Joint predictiveness in inflectional paradigms. Word Structure9(2). 156–182. 10.3366/word.2016.0092
    https://doi.org/10.3366/word.2016.0092 [Google Scholar]
  9. Bonami, Olivier & Gilles Boyé
    2006 Deriving inflectional irregularity. InStefan Müller (ed.), Proceedings of the 13th International Conference on Head Driven Phrase Structure Grammar, Varna, 361–380. Stanford, CA: CSLI Publications. cslipublications.stanford.edu/HPSG/2006/bonami-boye.pdf
    [Google Scholar]
  10. 2014 De formes en thèmes. InFlorence Villoing, Sarah Leroy & Sophie David (eds.), Foisonnements morphologiques. Études en hommage à Françoise Kerleroux, 17–45. Paris: Presses Universitaires de Paris-Ouest.
    [Google Scholar]
  11. Boyé, Gilles & Gauvain Schalchli
    2019 Realistic data and paradigms: The paradigm cell finding problem. Morphology29. 199–248. 10.1007/s11525‑018‑9335‑1
    https://doi.org/10.1007/s11525-018-9335-1 [Google Scholar]
  12. Brown, Dunstan, Marina Chumakina & Greville G. Corbett
    2013Canonical morphology and syntax. Oxford: Oxford University Press.
    [Google Scholar]
  13. Brown, Dunstan & Andrew Hippisley
    2012Network morphology: A defaults based theory of word structure. Cambridge: Cambridge University Press. 10.1017/CBO9780511794346
    https://doi.org/10.1017/CBO9780511794346 [Google Scholar]
  14. Budassi, Marco & Eleonora Litta
    2017 In trouble with the rules. Theoretical issues raised by the insertion of -sc-verbs into Word Formation Latin. InProceedings of the Workshop on Resources and Tools for Derivational Morphology (DeriMo), 15–26.
    [Google Scholar]
  15. Bybee, Joan
    1995 Regular morphology and the lexicon. Language and Cognitive Processes10(5). 425–455. doi:  10.1080/01690969508407111
    https://doi.org/10.1080/01690969508407111 [Google Scholar]
  16. Corbett, Greville G.
    2005 The canonical approach in typology. InZygmunt Frajzyngier, Adam Hodges & David S. Rood (eds.), Linguistic diversity and language theories, 25–49. Amsterdam: John Benjamins. 10.1075/slcs.72.03cor
    https://doi.org/10.1075/slcs.72.03cor [Google Scholar]
  17. 2009 Canonical inflectional classes. InFabio Montermini, Gilles Boyé & Jesse Tseng (eds.), Selected proceedings of the 6th Décembrettes: Morphology in Bordeaux, 1–11. Somerville: Cascadilla Proceedings Project.
    [Google Scholar]
  18. Delatte, Louis, Étienne Evrard, Suzanne Govaerts & Joseph Denooz
    1981Dictionnaire fréquentiel et index inverse de la langue latine. Liège: LASLA.
    [Google Scholar]
  19. Dressler, Wolfgang U.
    2002 Latin inflection classes. InA. Machtelt Bolkestein, Caroline H. M. Kroon, Harm Pinkster, H. Wim Remmelink & Rodie Risselada (eds.), Theory and description in Latin linguistics, 91–110. Leiden: Brill.
    [Google Scholar]
  20. Friedman, Jerome H.
    2001 Greedy function approximation: A gradient boosting machine. Annals of statistics, 1189–1232. 10.1214/aos/1013203451
    https://doi.org/10.1214/aos/1013203451 [Google Scholar]
  21. Guzmán Naranjo, Matías
    2019Analogical classification in formal grammar. Berlin: Language Science Press.
    [Google Scholar]
  22. 2020 Analogy, complexity and predictability in the Russian nominal inflection system. Morphology30(3). 219–262. 10.1007/s11525‑020‑09367‑1
    https://doi.org/10.1007/s11525-020-09367-1 [Google Scholar]
  23. Guzmán Naranjo, Matías & Olivier Bonami
    2021 Overabundance and inflectional classification: quantitative evidence from Czech. Glossa6. doi:  10.5334/gjgl.1626
    https://doi.org/10.5334/gjgl.1626 [Google Scholar]
  24. Litta, Eleonora & Marco Passarotti
    2020 (When) inflection needs derivation: A word formation lexicon for Latin. InNigel Holmes, Marijke Ottink, Josine Schrickx & Maria Selig (eds.), Lemmata Linguistica Latina. Vol.1: Words and Sounds, 224–239. Berlin: De Gruyter Mouton.
    [Google Scholar]
  25. Malouf, Robert
    2017 Abstractive morphological learning with a recurrent neural network. Morphology27(4). 431–458. 10.1007/s11525‑017‑9307‑x
    https://doi.org/10.1007/s11525-017-9307-x [Google Scholar]
  26. Mason, Llew, Jonathan Baxter, Peter L. Bartlett & Marcus R. Frean
    2000 Boosting algorithms as gradient descent. InAdvances in Neural Information Processing Systems, 512–518.
    [Google Scholar]
  27. McGillivray, Barbara & Adam Kilgarriff
    2013 Tools for historical corpus research, and a corpus of Latin. New Methods in Historical Corpus Linguistics (3). 247–257.
    [Google Scholar]
  28. Passarotti, Marco, Marco Budassi, Eleonora Litta & Paolo Ruffolo
    2017 The Lemlat 3.0 package for morphological analysis of Latin. InGerlof Bouma & Yvonne Adesam (eds.), Proceedings of the NoDaLiDa 2017 Workshop on Processing Historical Language, 24–31. Gothenburg: Linköping University Electronic Press.
    [Google Scholar]
  29. Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot & Édouard Duchesnay
    2011 Scikit-learn: Machine learning in Python. Journal of Machine Learning Research12. 2825–2830.
    [Google Scholar]
  30. Pellegrini, Matteo
    2020 Predictability in Latin inflection. An entropy-based approach. Bergamo/Pavia: Università di Bergamo-Università di Pavia PhD dissertation.
  31. 2021 Patterns of interpredictability and principal parts in Latin verb paradigms: An entropy-based approach. Journal of Latin Linguistics19(2). 195–221. 10.1515/joll‑2020‑2014
    https://doi.org/10.1515/joll-2020-2014 [Google Scholar]
  32. Pellegrini, Matteo & Marco Passarotti
    2018 LatInfLexi: An inflected lexicon of Latin verbs. InProceedings of the Fifth Italian Conference on Computational Linguistics (CLiC-it 2018). 10.4000/books.aaccademia.3582
    https://doi.org/10.4000/books.aaccademia.3582 [Google Scholar]
  33. Pierrehumbert, Janet
    2001 Stochastic phonology. Glot International5(6). 195–207.
    [Google Scholar]
  34. Plaster, Keith, Maria Polinsky & Boris Harizanov
    2013 Noun classes grow on trees. InBalthasar Bickel, Lenore A. Grenoble, David A. Peterson & Alan Timberlake (eds.), Language typology and historical contingency: In honor of Johanna Nichols, 153–170. Amsterdam: John Benjamins. 10.1075/tsl.104.06pla
    https://doi.org/10.1075/tsl.104.06pla [Google Scholar]
  35. Sims, Andrea
    2015Inflectional defectiveness. Cambridge: Cambridge University Press. 10.1017/CBO9781107053854
    https://doi.org/10.1017/CBO9781107053854 [Google Scholar]
  36. Stump, Gregory T.
    2001Inflectional morphology: A theory of paradigm structure. Cambridge: Cambridge University Press. 10.1017/CBO9780511486333
    https://doi.org/10.1017/CBO9780511486333 [Google Scholar]
  37. 2015 Inflection classes. InMatthew Baerman (ed.), The Oxford handbook of inflection, 113–139. Oxford: Oxford University Press.
    [Google Scholar]
  38. Stump, Gregory T. & Raphael A. Finkel
    2013Morphological typology: From word to paradigm. Cambridge: Cambridge University Press. 10.1017/CBO9781139248860
    https://doi.org/10.1017/CBO9781139248860 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/sl.21002.bon
Loading
/content/journals/10.1075/sl.21002.bon
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: Latin ; inflection ; derivation ; morphology
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error