1887
Volume 8, Issue 1
  • ISSN 2210-4372
  • E-ISSN: 2210-4380
USD
Buy:$35.00 + Taxes

Abstract

Abstract

This perspective paper discusses four general desiderata of current computational stylistics and (neuro-)cognitive poetics concerning the development of (a) appropriate databases/training corpora, (b) advanced qualitative-quantitative narrative analysis (Q2NA) and machine learning tools for feature extraction, (c) ecologically valid literary test materials, and (d) open-access reader-response data banks. In six explorative computational stylistics studies, it introduces a number of tools that provide QNA indices of the foregrounding potential at the sublexical, lexical, inter- and supralexical levels for poems by Shakespeare, Blake, or Dickens. These concern lexical diversity and aesthetic potential, sentiment analysis, sublexical sonority scores or phrase structure, and topics analysis. The results illustrate the complex interplay of stylistic features and the necessity for theoretical guidance and interdisciplinary cooperation in selecting adequate training corpora, QNA tools, test texts, and response measures.

Loading

Article metrics loading...

/content/journals/10.1075/ssol.18002.jac
2019-01-17
2024-12-13
Loading full text...

Full text loading...

References

  1. Abramo, F., Gambino, R., Pulvirenti, G., Xue, S., Sylvester, T., Mangen, A., Papp-Zipernovszky, O., Lüdtke, J. & Jacobs, A. M.
    (2018) A qualitative-quantitative analysis of Shakespeare’s Sonnet 60. Style, in revision.
    [Google Scholar]
  2. Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M.
    (2012) The power of emotional valence-from cognitive to affective processes in reading. Frontiers in Human Neuroscience, 6(192). doi:  10.3389/fnhum.2012.00192
    https://doi.org/10.3389/fnhum.2012.00192 [Google Scholar]
  3. (2014) Fact vs fiction: How paratextual information shapes our reading processes. Social Cognitive and Affective Neuroscience, 9(1), 22–29. doi:  10.1093/scan/nss098
    https://doi.org/10.1093/scan/nss098 [Google Scholar]
  4. Andrzejewski, D., Zhu, X., & Craven, M.
    (2009) Incorporating domain knowledge into topic modeling via dirichlet forest priors. ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pp.25–32, New York, NY: ACM. 10.1145/1553374.1553378
    https://doi.org/10.1145/1553374.1553378 [Google Scholar]
  5. Armeni, K., Willems, R. M., & Frank, S. L.
    (2017) Probabilistic language models in cognitive neuroscience: promises and pitfalls. Neuroscience and Biobehavioral Reviews, 83, 579–588. doi:  10.1016/j.neubiorev.2017.09.001
    https://doi.org/10.1016/j.neubiorev.2017.09.001 [Google Scholar]
  6. Aryani, A., Jacobs, A. M., & Conrad, M.
    (2013) Extracting salient sublexical units from written texts: “Emophon,” a corpus-based approach to phonological iconicity. Frontiers in Psychology, 4(654). doi:  10.3389/fpsyg.2013.00654
    https://doi.org/10.3389/fpsyg.2013.00654 [Google Scholar]
  7. Aryani, A., Kraxenberger, M., Ullrich, S., Jacobs, A. M., & Conrad, M.
    (2016) Measuring the basic affective tone of poems via phonological saliency and iconicity. Psychology of Aesthetics, Creativity, and the Arts, 10, 191–204. doi:  10.1037/aca0000033
    https://doi.org/10.1037/aca0000033 [Google Scholar]
  8. Bambini, V., Canal, P., Resta, D., & Grimaldi, M.
    (2018) Time course and neurophysiological underpinnings of metaphor in literary context. Discourse Processes. doi:  10.1080/0163853X.2017.1401876
    https://doi.org/10.1080/0163853X.2017.1401876 [Google Scholar]
  9. Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E.
    (2009) The WaCky wide web: A collection of very large linguistically processed web-crawled corpora. Language Resources and Evaluation, 43, 209–226. doi:  10.1007/s10579‑009‑9081‑4
    https://doi.org/10.1007/s10579-009-9081-4 [Google Scholar]
  10. Berlyne, D. E.
    (1971) Aesthetics and psychobiology. New York, NY: Appleton-Century-Crofts.
    [Google Scholar]
  11. Bestgen, Y., & Vincze, N.
    (2012) Checking and boot-strapping lexical norms by means of word similarity indexes. Behavior Research Methods, 44(4), 998–1006. doi:  10.3758/s13428‑012‑0195‑z
    https://doi.org/10.3758/s13428-012-0195-z [Google Scholar]
  12. Bird, S., Klein, E., & Loper, E.
    (2009) Natural language processing with Python. O’Reilly Media.
    [Google Scholar]
  13. Bohrn, I. C., Altmann, U., Lubrich, O., Menninghaus, W., & Jacobs, A. M.
    (2013) When we like what we know – a parametric fMRI analysis of beauty and familiarity. Brain Language, 124, 1–8. doi:  10.1016/j.bandl.2012.10.003
    https://doi.org/10.1016/j.bandl.2012.10.003 [Google Scholar]
  14. Bornet, C., & Kaplan, F.
    (2017) A simple set of rules for characters and place recognition in French novels. Frontiers in Digital Humanities, 4(6). doi:  10.3389/fdigh.2017.00006
    https://doi.org/10.3389/fdigh.2017.00006 [Google Scholar]
  15. Braun, M., Jacobs, A. M., Hahne, A., Ricker, B., Hofmann, M., & Hutzler, F.
    (2006) Model-generated lexical activity predicts graded ERP amplitudes in lexical decision. Brain Research, 1073–1074, 431–439.
    [Google Scholar]
  16. Bradley, M. M., & Lang, P. J.
    (1999) Affective norms for English words (ANEW): Stimuli instruction and affective ratings technical report C-1. Gainesville: University of Florida.
    [Google Scholar]
  17. Braun, M., Hutzler, F., Ziegler, J. C., Dambacher, M., & Jacobs, A. M.
    (2009) Pseudo homophone effects provide evidence of early lexico-phonological processing in visual word recognition. Human Brain Mapping, 30(7), 1977–1989. 10.1002/hbm.20643
    https://doi.org/10.1002/hbm.20643 [Google Scholar]
  18. Braun, M., Hutzler, F., Munte, T. F., Rotte, M., Dambacher, M., Richlan, F., & Jacobs, A. M.
    (2015) The neural bases of the pseudohomophone effect: Phonological constraints on lexico-semantic processing in reading. Neuroscience, 295, 151–163. doi:  10.1016/j.neuroscience.2015.03.035
    https://doi.org/10.1016/j.neuroscience.2015.03.035 [Google Scholar]
  19. Breen, M.
    (2014) Empirical investigations of the role of implicit prosody in sentence processing. Language and Linguistics Compass, 8(2), 37–50. 10.1111/lnc3.12061
    https://doi.org/10.1111/lnc3.12061 [Google Scholar]
  20. Briesemeister, B. B., Kuchinke, L., & Jacobs, A. M.
    (2011) Discrete emotion norms for nouns: Berlin a ective word list (DENN – BAWL). Behavior Research Methods, 43(2), 441–448. doi:  10.3758/s13428‑011‑0059‑y
    https://doi.org/10.3758/s13428-011-0059-y [Google Scholar]
  21. Brunswik, E.
    (1956) Perception and the representative design of psychological experiments (2nd ed.). Berkeley: University of California Press.
    [Google Scholar]
  22. Burke, M.
    (2013) The rhetorical neuroscience of style: On the primacy of style elements during literary discourse processing. Journal of Literary Semantics, 42, 199–215. 10.1515/jls‑2013‑0010
    https://doi.org/10.1515/jls-2013-0010 [Google Scholar]
  23. Burrows, J. F.
    (1986) Modal verbs and moral principles: an aspect of Jane Austen’s style, Literary and Linguistic Computing, 1, 9–23. 10.1093/llc/1.1.9
    https://doi.org/10.1093/llc/1.1.9 [Google Scholar]
  24. Burrows, J.
    (2002) ‘Delta’: A measure of stylistic difference and a guide to likely authorship. Literary and Linguistic Computing, 17(3), 267–87. 10.1093/llc/17.3.267
    https://doi.org/10.1093/llc/17.3.267 [Google Scholar]
  25. Busemann, A.
    (1948) Stil und Charakter. Untersuchungen zur Psychologie der individuellen Redeform, Meisenheim.
    [Google Scholar]
  26. Castiglione, D.
    (2017) Difficult poetry processing: Reading times and the narrativity hypothesis. Language and Literature, 26, 99–121. 10.1177/0963947017704726
    https://doi.org/10.1177/0963947017704726 [Google Scholar]
  27. Citron, F. M. M., Weekes, B. S., & Ferstl, E. C.
    (2012) How are affective word ratings related to lexico-semantic properties? Evidence from the Sussex Affective Word List (SAWL). Applied Psycholinguist, 35, 313–331. doi:  10.1017/S0142716412000409
    https://doi.org/10.1017/S0142716412000409 [Google Scholar]
  28. Crossley, S. A., Kyle, K., & McNamara, D. S.
    (2017) Sentiment Analysis and Social Cognition Engine (SEANCE): An automatic tool for sentiment, social cognition, and social-order analysis. Behavior Research Methods, 49(3), 803–821. doi:  10.3758/s13428‑016‑0743‑z
    https://doi.org/10.3758/s13428-016-0743-z [Google Scholar]
  29. Dalvean, M.
    (2015) Ranking contemporary American poems. Digital Scholarship in the Humanities, 30, 1. 10.1093/llc/fqt036
    https://doi.org/10.1093/llc/fqt036 [Google Scholar]
  30. Davies, M.
    (2009) The 385+ million word Corpus of Contemporary American English (1990–2008+): Design, architecture, and linguistic insights. International Journal of Corpus Linguistics, 14, 159–190. 10.1075/ijcl.14.2.02dav
    https://doi.org/10.1075/ijcl.14.2.02dav [Google Scholar]
  31. Davis, P.
    (2013) Reading and the reader. Oxford, United Kingdom: Oxford University Press.
    [Google Scholar]
  32. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.
    (1990) Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41, 391–407. 10.1002/(SICI)1097‑4571(199009)41:6<391::AID‑ASI1>3.0.CO;2‑9
    https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 [Google Scholar]
  33. Delmonte, R.
    (2016) Exploring Shakespeare’s Sonnets with SPARSAR. Linguistics and Literature Studies, 4(1), 61–95. doi:  10.13189/lls.2016.040110
    https://doi.org/10.13189/lls.2016.040110 [Google Scholar]
  34. De Smedt, T., & Daelemans, W.
    (2012) Pattern for Python. Journal of Machine Learning Research, 13, 2031–2035.
    [Google Scholar]
  35. Eder, M.
    (2013) Mind your corpus: Systematic errors in authorship attribution. Literary and Linguistic Computing, 28(4), 604–614. 10.1093/llc/fqt039
    https://doi.org/10.1093/llc/fqt039 [Google Scholar]
  36. Eder, M., Rybicki, J., & Kestemont, M.
    (2016) Stylometry with R: A package for computational text analysis. R Journal, 8(1), 107–121.
    [Google Scholar]
  37. Epstein, R.
    (2004) Consciousness, art and the brain: Lessons from Marcel Proust. Consciousness and Cognition, 13, 213–240. doi:  10.1016/S1053‑8100(03)00006‑0
    https://doi.org/10.1016/S1053-8100(03)00006-0 [Google Scholar]
  38. Fechner, G. T.
    (1876) Vorschule der Ästhetik, Vol.2. Leipzig: Breitkopf & Härtel.
    [Google Scholar]
  39. Fónagy, I.
    (1961) Communication in poetry. Word, 17, 194–218. doi:  10.1080/00437956.1961.11659754
    https://doi.org/10.1080/00437956.1961.11659754 [Google Scholar]
  40. (1983/1991) La vive voix: essais de psycho-phonetique. Paris: Payot.
    [Google Scholar]
  41. Forsyth, R. S.
    (2000) Pops and flops: Some properties of famous English poems. Empirical Studies of the Arts, 18(1), 49–67. 10.2190/E7Q8‑6062‑K6H4‑XFRW
    https://doi.org/10.2190/E7Q8-6062-K6H4-XFRW [Google Scholar]
  42. Forsyth, R. S., & Holmes, D. I.
    (1996) Feature-finding for text classification. Literary and Linguistic Computing, 11, 163–174. 10.1093/llc/11.4.163
    https://doi.org/10.1093/llc/11.4.163 [Google Scholar]
  43. Fucks, W.
    (1955) Mathematische Analyse von Sprachelementen, Sprachstil und Sprachen, Köln. 10.1007/978‑3‑663‑04287‑7
    https://doi.org/10.1007/978-3-663-04287-7 [Google Scholar]
  44. Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z.
    (2004) Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, & Computers, 36, 193–202. doi:  10.3758/BF03195564
    https://doi.org/10.3758/BF03195564 [Google Scholar]
  45. Hanauer, D.
    (2017) Towards a critical mass of accumulated knowledge in the field of scientific literary studies. Scientific Study of Literature, 7(1), 1–3. 10.1075/ssol.7.1.01edi
    https://doi.org/10.1075/ssol.7.1.01edi [Google Scholar]
  46. Hayward, M.
    (1991) A connectionist model of poetic meter. Poetics, 20, 303–317. 10.1016/0304‑422X(91)90012‑E
    https://doi.org/10.1016/0304-422X(91)90012-E [Google Scholar]
  47. Henrich, V., Hinrichs, E., & Suttner, K.
    (2012) Automatically linking germanet to Wikipedia for harvesting corpus examples for germanet senses. Journal for Language Technology and Computational Linguistics, 27, 1–19.
    [Google Scholar]
  48. Herrmann, J. B., van Dalen-Oskam, K., & Schöch, C.
    (2015) Revisiting style, a key concept in literary studies. Journal of Literary Theory, 9(1), 25–52.
    [Google Scholar]
  49. Hoffstaedter, P.
    (1987) Poetic text processing and its empirical investigation. Poetics, 16, 75–91. doi:  10.1016/0304‑422X(87)90037‑4
    https://doi.org/10.1016/0304-422X(87)90037-4 [Google Scholar]
  50. Hofmann, M. J., Kuchinke, L., Biemann, C., Tamm, S., & Jacobs, A. M.
    (2011) Remembering words in context as predicted by an associative read-out model. Frontiers in Psychology, 2(252). doi:  10.3389/fpsyg.2011.00252
    https://doi.org/10.3389/fpsyg.2011.00252 [Google Scholar]
  51. Hofmann, M. J., & Jacobs, A. M.
    (2014) Interactive activation and competition models and semantic context: From behavioral to brain data. Neuroscience & Biobehavioral Reviews, 46, 85–104. doi:  10.1016/j.neubiorev.2014.06.011
    https://doi.org/10.1016/j.neubiorev.2014.06.011 [Google Scholar]
  52. Hogan, P. C.
    (2003) Cognitive science, literature and the arts. New York, NY: Routledge.
    [Google Scholar]
  53. Hollis, G., Westbury, C., & Lefsrud, L.
    (2017) Extrapolating human judgments from skip-gram vector representations of word meaning. The Quarterly Journal of Experimental Psychology, 1–45. doi:  10.1080/17470218.2016.1195417
    https://doi.org/10.1080/17470218.2016.1195417 [Google Scholar]
  54. Hoorn, J., Frank, S., Kowalczyk, W., & van der Ham, F.
    (1999) Neural network identification of poets using letter sequences. Literary and Linguistic Computing, 14(3), 311–338. 10.1093/llc/14.3.311
    https://doi.org/10.1093/llc/14.3.311 [Google Scholar]
  55. Hoover, D. L.
    (2007) Corpus stylistics, stylometry, and the styles of Henry James. Style, 41(2), 174–203.
    [Google Scholar]
  56. Hoshi, H., & Menninghaus, W.
    (2018) The eye tracks the aesthetic appeal of sentences. Journal of Vision, 18(3). doi:  10.1167/18.3.19
    https://doi.org/10.1167/18.3.19 [Google Scholar]
  57. Hsu, C. T., Jacobs, A. M., Citron, F., & Conrad, M.
    (2015) The emotion potential of words and passages in reading harry potter: An fMRI study. Brain and Language, 142, 96–114. doi:  10.1016/j.bandl.2015.01.011
    https://doi.org/10.1016/j.bandl.2015.01.011 [Google Scholar]
  58. Hutto, C. J., & Gilbert, E. E.
    (2014) VADER: A parsimonious rule-based model for sentiment analysis of social media rext. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI.
    [Google Scholar]
  59. Jacobs, A. M.
    (2015a) Towards a neurocognitive poetics model of literary reading. InR. Willems (Ed.), Cognitive neuroscience of natural language use (pp.135–159). Cambridge, United Kingdom: Cambridge University Press. 10.1017/CBO9781107323667.007
    https://doi.org/10.1017/CBO9781107323667.007 [Google Scholar]
  60. (2015b) Neurocognitive poetics: Methods and models for investigating the neuronal and cognitive-affective bases of literature reception. Frontiers in Human Neuroscience, 9, 186. doi:  10.3389/fnhum.2015.00186
    https://doi.org/10.3389/fnhum.2015.00186 [Google Scholar]
  61. Jacobs, A.
    (2015c) The scientific study of literary experience: Sampling the state of the art. Scientific Study of Literature, 5(2), 139–170. 10.1075/ssol.5.2.01jac
    https://doi.org/10.1075/ssol.5.2.01jac [Google Scholar]
  62. Jacobs, A. M.
    (2017) Quantifying the beauty of words: A neurocognitive poetics perspective. Frontiers in Human Neuroscience, 11, 622. doi:  10.3389/fnhum.2017.00622
    https://doi.org/10.3389/fnhum.2017.00622 [Google Scholar]
  63. (2018) The Gutenberg English Poetry Corpus: Exemplary quantitative narrative analyses. Frontiers in Digital Humanities, 5(5). doi:  10.3389/fdigh.2018.00005
    https://doi.org/10.3389/fdigh.2018.00005 [Google Scholar]
  64. Jacobs, A. M., & Kinder, A.
    (2017) The brain is the prisoner of thought: A machine-learning assisted quantitative narrative analysis of literary metaphors for use in Neurocognitive Poetics. Metaphor and Symbol, 32(3), 139–160. doi:  10.1080/10926488.2017.1338015
    https://doi.org/10.1080/10926488.2017.1338015 [Google Scholar]
  65. (2018) What makes a metaphor literary? Answers from two computational studies. Metaphor and Symbol, in press. 10.1080/10926488.2018.1434943
    https://doi.org/10.1080/10926488.2018.1434943 [Google Scholar]
  66. Jacobs, A. M., & Lüdtke, J.
    (2017) Immersion into narrative and poetic worlds: A neurocognitive poetics perspective. InF. Hakemulder, M. M. Kuijpers, E. S. Tan, K. Bálint, & M. M. Doicaru (Eds.), Narrative absorption (pp.69–96). Amsterdam, Netherlands: John Benjamins. 10.1075/lal.27.05jac
    https://doi.org/10.1075/lal.27.05jac [Google Scholar]
  67. Jacobs, A. M., & Willems, R. M.
    (2017) The fictive brain: Neurocognitive correlates of engagement in literature. Review of General Psychology. 22, 147–160. doi:  10.1037/gpr0000106
    https://doi.org/10.1037/gpr0000106 [Google Scholar]
  68. Jacobs, A. M., Võ, M. L. H., Briesemeister, B. B., Conrad, M., Hofmann, M. J., Kuchinke, L., Lüdtke, J., & Braun, M.
    (2015) 10 years of BAWLing into a ective and aesthetic processes in reading: What are the echoes?Frontiers in Psychology, 6, 714. doi:  10.3389/fpsyg.2015.00714
    https://doi.org/10.3389/fpsyg.2015.00714 [Google Scholar]
  69. Jacobs, A. M., Hofmann, M. J., & Kinder, A.
    (2016) On elementary affective decisions: To like or not to like, that is the question. Frontiers in Psychology, 7, 1836. doi:  10.3389/fpsyg.2016.01836
    https://doi.org/10.3389/fpsyg.2016.01836 [Google Scholar]
  70. Jacobs, A. M., Lüdtke, J., Aryani, A., Meyer-Sickendiek, B., & Conrad, M.
    (2016) Mood- empathic and aesthetic responses in poetry reception: A model-guided, multilevel, multimethod approach. Scientific Study of Literature, 6(1), 87–130. doi:  10.1075/ssol.6.1.06jac
    https://doi.org/10.1075/ssol.6.1.06jac [Google Scholar]
  71. Jacobs, A. M., Schuster, S., Xue, S., & Lüdtke, J.
    (2017) What’s in the brain that ink may character.…: A quantitative narrative analysis of Shakespeare’s 154 sonnets for use in Neurocognitive Poetics. Scientific Study of Literature, 7(1), 4–51. doi:  10.1075/ssol.7.1.02jac
    https://doi.org/10.1075/ssol.7.1.02jac [Google Scholar]
  72. James, W.
    (1890/1950) The principles of psychology. New York, NY: Dover.
    [Google Scholar]
  73. Jannidis, F., & Lauer, G.
    (2014) Burrows’s delta and its use in German literary history. InM. Erlin & L. Tatlock (Eds.), Distant readings: Topologies of German culture in the long nineteenth century (pp.29–54). Rochester, NY: Camden House.
    [Google Scholar]
  74. Jurafsky, D., & Martin, J. H.
    (2016) N-grams (draft chapter). https://web.stanford.edu/˜jurafsky/slp3/4.pdf
  75. Kao, J., & Jurafsky, D.
    (2012) A computational analysis of style, affect, and imagery in contemporary poetry. NAACL Workshop on Computational Linguistics for Literature. www.stanford.edu/jurafsky/kaojurafsky12.pdf
    [Google Scholar]
  76. Kaplan, D., & Blei, D.
    (2007) A computational approach to style in American poetry. IEEE Conference on Data Mining.
    [Google Scholar]
  77. Katz, A. N., Paivio, A., & Marschark, M.
    (1985) Poetic comparisons: Psychological dimensions of metaphoric processing. Journal of Psycholinguistic Research, 14, 365–383. 10.1007/BF01067881
    https://doi.org/10.1007/BF01067881 [Google Scholar]
  78. Katz, A., Paivio, A., Marschark, M., & Clark, J.
    (1988) Norms for 204 literary and 260 non- literary metaphors on psychological dimensions. Metaphor and Symbolic Activity, 3(4), 191–214. 10.1207/s15327868ms0304_1
    https://doi.org/10.1207/s15327868ms0304_1 [Google Scholar]
  79. Keats, J.
    (1958) Letter 199, To George and Georgiana Keats. InH. Rollins (Ed.), The letters of John Keats (Vol.2). Cambridge, Massachusetts: Harvard University Press.
    [Google Scholar]
  80. Keidel, J. L., Davis, P. M., Gonzalez-Diaz, V., Martin, C. D., & Thierry, G.
    (2013) How Shakespeare tempests the brain: Neuroimaging insights. Cortex, 49(4). doi:  10.1016/j.cortex.2012.03.011
    https://doi.org/10.1016/j.cortex.2012.03.011 [Google Scholar]
  81. Kintsch, W.
    (1980) Learning from text, levels of comprehension, or: why anyone would read a story anyway. Poetics, 9, 87–98. doi:  10.1016/0304‑422X(80)90013‑3
    https://doi.org/10.1016/0304-422X(80)90013-3 [Google Scholar]
  82. (2000) Metaphor comprehension: A computational theory. Psychonomic Bulletin & Review, 7, 257–266. doi:  10.3758/BF03212981
    https://doi.org/10.3758/BF03212981 [Google Scholar]
  83. Kintsch, W., & van Dijk, T. A.
    (1978) Toward a model of text comprehension and production. Psychological Review, 85, 363–394. doi:  10.1037/0033‑295X.85.5.363
    https://doi.org/10.1037/0033-295X.85.5.363 [Google Scholar]
  84. Kraxenberger, M.
    (2017) On sound-emotion associations in poetry (Doctoral dissertation). Freie Universität Berlin.
  85. Kraxenberger, M., & Menninghaus, W.
    (2016) Emotional effects of poetic phonology, word positioning and dominant stress peaks in poetry. Scientific Study of Literature, 6(2), 298–313. doi:  10.1075/ssol.6.2.06kra
    https://doi.org/10.1075/ssol.6.2.06kra [Google Scholar]
  86. (2017) Affinity for poetry and aesthetic appreciation of joyful and sad poems. Frontiers in Psychology, 7, 2051.
    [Google Scholar]
  87. Kucera, H., & Francis, W. N.
    (1967) Computational analysis of present-day American English. Providence, RI: Brown University Press.
    [Google Scholar]
  88. Kutas, M.
    (2006) One lesson learned: Frame language processing – literal and figurative – as a human brain function. Metaphor and Symbol, 21, 285–325. doi:  10.1207/s15327868ms2104_5
    https://doi.org/10.1207/s15327868ms2104_5 [Google Scholar]
  89. Larsen, S. E., & Seilman, U.
    (1988) Personal remindings while reading literature. Text, 8, 411–429. 10.1515/text.1.1988.8.4.411
    https://doi.org/10.1515/text.1.1988.8.4.411 [Google Scholar]
  90. Lea, R. B., Rapp, D. N., Elfenbein, A., Mitchel, A. D., & Romine, R. S.
    (2008) Sweet silent thought: Alliteration and resonance in poetry comprehension. Psychological Science, 19(7), 709–716. doi:  10.1111/j.1467‑9280.2008.02146.x
    https://doi.org/10.1111/j.1467-9280.2008.02146.x [Google Scholar]
  91. Leech, G. N.
    (1969) A linguistic guide to English poetry. London, United Kingdom: Longman.
    [Google Scholar]
  92. Lehne, M., Engel, P., Menninghaus, W., Jacobs, A. M., & Koelsch, S.
    (2015) Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference. PLOS One, 10(5). doi:  10.1371/journal.pone.0124550
    https://doi.org/10.1371/journal.pone.0124550 [Google Scholar]
  93. Louwerse, M. M.
    (2001) An analytic and cognitive parametrization of coherence relations. Cognitive Linguistics, 12(3), 291–315.
    [Google Scholar]
  94. Lüdtke, J., Meyer-Sickendiek, B., & Jacobs, A. M.
    (2014) Immersing in the stillness of an early morning: Testing the mood empathy hypothesis in poems. Psychology of Aesthetics, Creativity, and the Arts, 8, 363–377. doi:  10.1037/a0036826
    https://doi.org/10.1037/a0036826 [Google Scholar]
  95. Mandera, P., Keuleers, E., & Brysbaert, M.
    (2015) How useful are corpus-based methods for extrapolating psycholinguistic variables?The Quarterly Journal of Experimental Psychology, 68(8), 1623–1642. 10.1080/17470218.2014.988735
    https://doi.org/10.1080/17470218.2014.988735 [Google Scholar]
  96. Marschark, M., Katz, A. N., & Paivio, A.
    (1983) Dimensions of metaphor. Journal of Psycholinguistic Research, 12, 17–40. 10.1007/BF01072712
    https://doi.org/10.1007/BF01072712 [Google Scholar]
  97. Martindale, C.
    (1978) The evolution of English poetry. Poetics, 7, 231–248. 10.1016/0304‑422X(78)90039‑6
    https://doi.org/10.1016/0304-422X(78)90039-6 [Google Scholar]
  98. Menninghaus, W., Bohrn, I. C., Altmann, U., Lubrich, O., & Jacobs, A. M.
    (2014) Sounds funny? Humor effects of phonological and prosodic figures of speech. Psychology of Aesthetics, Creativity, and the Arts, 8(1), 71. 10.1037/a0035309
    https://doi.org/10.1037/a0035309 [Google Scholar]
  99. Miall, D. S.
    (2001) Sounds of contrast: An empirical approach to phonemic iconicity. Poetics, 29, 55–70. 10.1016/S0304‑422X(00)00025‑5
    https://doi.org/10.1016/S0304-422X(00)00025-5 [Google Scholar]
  100. Miall, D. S., & Kuiken, D.
    (1994) Foregrounding, defamiliarization and affect: Response to literary stories. Poetics, 22, 389–407. doi:  10.1016/0304‑422X(94)00011‑5
    https://doi.org/10.1016/0304-422X(94)00011-5 [Google Scholar]
  101. (2002) The effects of local phonetic contrasts in readers’ responses to a short story. Empirical Studies of the Arts, 20, 157–175. 10.2190/M9RC‑WBP5‑4NDQ‑2EJD
    https://doi.org/10.2190/M9RC-WBP5-4NDQ-2EJD [Google Scholar]
  102. Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., The Google Books Team, … Lieberman Aiden, E.
    (2011) Quantitative analysis of culture using millions of digitized books. Science, 331(6014), 176–182. 10.1126/science.1199644
    https://doi.org/10.1126/science.1199644 [Google Scholar]
  103. Mikolov, T., Chen, K., Corrado, G., & Dean, J.
    (2013) Efficient estimation of word representations in vector space. Retrieved fromhttps://arxiv.org/abs/1301.3781
  104. Miller, G. A.
    (1995) WordNet: A lexical database for English. Communications of the ACM, 38(11), 39–41. 10.1145/219717.219748
    https://doi.org/10.1145/219717.219748 [Google Scholar]
  105. Neuhäuser, R.
    (1991) Sound and meaning in romantic poetry: Preseren’s Poeziie. Russian Literature, 85–108. 10.1016/0304‑3479(91)90068‑C
    https://doi.org/10.1016/0304-3479(91)90068-C [Google Scholar]
  106. O’Sullivan, N., Davis, P., Billington, J., Gonzalez-Diaz, V., & Corcoran, R.
    (2015) “Shall I compare thee”: e neural basis of literary awareness, and its bene ts to cognition. Cortex, 73, 144–157. doi:  10.1016/j.cortex.2015.08.014
    https://doi.org/10.1016/j.cortex.2015.08.014 [Google Scholar]
  107. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Dubourg, V.
    (2011) scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.
    [Google Scholar]
  108. Pennebaker, J. W., & Francis, M. E.
    (1999) Linguistic inquiry and word count (LIWC). Mahwah, NJ: Erlbaum.
    [Google Scholar]
  109. Petrie, K. J., Pennebaker, J. W., & Sivertsen, B.
    (2008) Things we said today: A linguistic analysis of the Beatles. Psychology of Aesthetics, Creativity, and the Arts, 2, 197–202. 10.1037/a0013117
    https://doi.org/10.1037/a0013117 [Google Scholar]
  110. Recchia, G., & Louwerse, M. M.
    (2015) Reproducing affective norms with lexical co-occurrence statistics: Predicting valence, arousal, and dominance. The Quarterly Journal of Experimental Psychology, 68(8), 1584–1598. 10.1080/17470218.2014.941296
    https://doi.org/10.1080/17470218.2014.941296 [Google Scholar]
  111. Rehuřek, R., & Sojka, P.
    (2010) Software framework for topic modelling with large corpora. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (pp.45–50). Valletta, Malta: ELRA.
    [Google Scholar]
  112. Riegel, M., Wierzba, M., Wypych, M., Zurawski, L., Jednorog, K., Grabowska, A., & Marchewka, A.
    (2015) Nencki Affective Word List (NAWL): Cultural adaptation of the Berlin Affective Word List-Reloaded (BAWL-R) for Polish. Behavior Research Methods, 47, 1222–1236. doi:  10.3758/s13428‑014‑0552‑1
    https://doi.org/10.3758/s13428-014-0552-1 [Google Scholar]
  113. Rouse, B., & Bennett, J. R.
    (1967) Editorial. Style, 1(1), v–vii.
    [Google Scholar]
  114. Salgaro, M.
    (2015) How literary can literariness be? Methodological problemsin the study of foregrounding. Scientific Study of Literature, 5(2), 229–249. doi:  10.1075/ssol.5.2.06sal
    https://doi.org/10.1075/ssol.5.2.06sal [Google Scholar]
  115. Schmidtke, D. S., Schröder, T., Jacobs, A. M., & Conrad, M.
    (2014a) ANGST: Affective norms for German sentiment terms, derived from the affective norms for English words. Behavior Research Methods, 46, 1108–1118. doi:  10.3758/s13428‑013‑0426‑y
    https://doi.org/10.3758/s13428-013-0426-y [Google Scholar]
  116. Schmidtke, D. S., Conrad, M., & Jacobs, A. M.
    (2014b) Phonological iconicity. Frontiers in Psychology, 5, 80. doi:  10.3389/fpsyg.2014.00080
    https://doi.org/10.3389/fpsyg.2014.00080 [Google Scholar]
  117. Schrott, R., & Jacobs, A. M.
    (2011) Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren (Brain and Poetry: How We Construct Our Realities). München: Hanser.
    [Google Scholar]
  118. Shen, Y.
    (2008) Metaphor and poetic figures. InR. W. Gibbs, Jr. (Ed.), The Cambridge handbook of metaphor and thought (pp.295–307). Cambridge, United Kingdom: Cambridge University Press. 10.1017/CBO9780511816802.019
    https://doi.org/10.1017/CBO9780511816802.019 [Google Scholar]
  119. Simonton, D. K.
    (1989) Shakespeare’s sonnets: A case of and for single-case historiometry. Journal of Personality, 57(3), 695–721. doi:  10.1111/j.1467‑6494.1989.tb00568.x
    https://doi.org/10.1111/j.1467-6494.1989.tb00568.x [Google Scholar]
  120. (1990) Lexical choices and aesthetic success: A computer content analysis of 154 Shakespeare sonnets. Computers and the Humanities, 24, 254–264.
    [Google Scholar]
  121. Steen, G.
    (2004) Can discourse properties of metaphor affect metaphor recognition?Journal of Pragmatics, 36(7), 1295–1313. doi:  10.1016/j.pragma.2003.10.014
    https://doi.org/10.1016/j.pragma.2003.10.014 [Google Scholar]
  122. Steyvers, M., Smyth, P., & Chemuduganta, C.
    (2011) Combining background knowledge and learned topics. Topics in Cognitive Science, 3, 18–47. doi:  10.1111/j.1756‑8765.2010.01097.x
    https://doi.org/10.1111/j.1756-8765.2010.01097.x [Google Scholar]
  123. Strobl, C., Malley, J., & Tutz, G.
    (2009) An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323–348. 10.1037/a0016973
    https://doi.org/10.1037/a0016973 [Google Scholar]
  124. Stockwell, P.
    (2009) The cognitive poetics of literary resonance. Language and Cognition, 1, 25–44. doi:  10.1515/LANGCOG.2009.002
    https://doi.org/10.1515/LANGCOG.2009.002 [Google Scholar]
  125. Stone, P. J., Dunphy, D. C., Smith, M. S., & Ogilvie, D. M.
    (1966) The general inquirer: A computer approach to content analysis. Cambridge: Massachusetts Institute of Technology Press.
    [Google Scholar]
  126. Tsur, R.
    (1992) What makes sound patterns expressive? The poetic mode of speech perception. Durham, NC: Duke University Press.
    [Google Scholar]
  127. (1997) Sound effects of poetry: Critical impressionism, reductionism and cognitive poetics. Pragmatics & Cognition, 5, 283–304. doi:  10.1075/pc.5.2.05tsu
    https://doi.org/10.1075/pc.5.2.05tsu [Google Scholar]
  128. Turner, F., & Poeppel, E.
    (1983) The neural lyre: Poetic meter, the brain and time. Poetry Magazine, 12, 277–309.
    [Google Scholar]
  129. Turney, P. D., & Littman, M. L.
    (2003) Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS), 21(4), 315–346. 10.1145/944012.944013
    https://doi.org/10.1145/944012.944013 [Google Scholar]
  130. Ullrich, S., Aryani, A., Kraxenberger, M., Jacobs, A. M., & Conrad, M.
    (2017) On the relation between the general affective meaning and the basic sublexical, lexical, and interlexical features of poetic texts – A case study using 57 poems of H. M. Enzensberger. Frontiers in Psychology, 7, 2073. doi:  10.3389/fpsyg.2016.02073
    https://doi.org/10.3389/fpsyg.2016.02073 [Google Scholar]
  131. van den Hoven, E., Hartung, F., Burke, M., & Willems, R. M.
    (2016) Individual differences in sensitivity to style during literary reading: Insights from eye-tracking. Collabra, 2, 1–16. doi:  10.1525/collabra.39
    https://doi.org/10.1525/collabra.39 [Google Scholar]
  132. van Peer, W., Hakemulder, J., & Zyngier, S.
    (2007) Lines on feeling: Foregrounding, aesthetics and meaning. Language and Literature, 16, 197–213. doi:  10.1177/0963947007075985
    https://doi.org/10.1177/0963947007075985 [Google Scholar]
  133. Vendler, H.
    (1997) The art of Shakespeare’s sonnets. Cambridge, MA: Harvard University Press.
    [Google Scholar]
  134. Võ, M. L. H., Jacobs, A. M., & Conrad, M.
    (2006) Cross-validating the Berlin affective word list. Behavioral Research Methods, 38, 606–609. doi: 10.3758/B.F.03193892
    https://doi.org/10.3758/B.F.03193892 [Google Scholar]
  135. Võ, M. L. H., Conrad, M., Kuchinke, L., Hartfeld, K., Hofmann, M. J., & Jacobs, A. M.
    (2009) The Berlin Affective Word List reloaded (BAWL-R). Behavioral Research Methods, 41, 534–539. doi:  10.3758/BRM.41.2.534
    https://doi.org/10.3758/BRM.41.2.534 [Google Scholar]
  136. Warriner, A. B., Kuperman, V., & Brysbaert, M.
    (2013) Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45, 1191–1207. doi:  10.3758/s13428‑012‑0314‑x
    https://doi.org/10.3758/s13428-012-0314-x [Google Scholar]
  137. Westbury, C., Keith, J., Briesemeister, B. B., Hofmann, M. J., & Jacobs, A. M.
    (2015) Avoid violence, rioting, and outrage; approach celebration, delight, and strength: Using large text corpora to compute valence, arousal, and the basic emotions. Quarterly Journal of Experimental Psychology, 68, 1599–1622. doi:  10.1080/17470218.2014.970204
    https://doi.org/10.1080/17470218.2014.970204 [Google Scholar]
  138. Whissell, C.
    (1999) Phonosymbolism and the emotional nature of sounds: Evidence of the preferential use of particular phonemes in texts of differing emotional tone. Perceptual and Motor Skills, 89, 19–48. doi:  10.2466/pms.1999.89.1.19
    https://doi.org/10.2466/pms.1999.89.1.19 [Google Scholar]
  139. Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Van den Bosch, A.
    (2016) Prediction during natural language comprehension. Cerebral Cortex, 26, 2506–2516. doi:  10.1093/cercor/bhv075
    https://doi.org/10.1093/cercor/bhv075 [Google Scholar]
  140. Wu, Z., & Palmer, M.
    (1994) Verbs semantics and lexical selection. Proceedings of the 32nd annual meeting on Association for Computational Linguistics, ACL ’94, pages133–138, Stroudsburg, PA, USA. Association for Computational Linguistics. 10.3115/981732.981751
    https://doi.org/10.3115/981732.981751 [Google Scholar]
  141. Wundt, W. M.
    (1874) Grundzüge der Physiologischen Psychologie. Leipzig: Engelmann.
    [Google Scholar]
  142. Xue, X., Giordano, D., Lüdtke, J., Gambino, R., Pulvirenti, G., Spampinato, C., & Jacobs, A. M.
    (2017) Weary with toil, I haste me to my bed: Eye tracking Shakespeare sonnets. Talk given atthe 19th European Conference on Eye Movements, Wuppertal, Germany, 2017.
    [Google Scholar]
  143. Yaron, I.
    (2008) What is a “difficult” poem? Towards a definition. Journal of Literary Semantics, 37(2), 129–150. doi:  10.1515/jlse.2008.008
    https://doi.org/10.1515/jlse.2008.008 [Google Scholar]
  144. Ziegler, J. C., Jacobs, A. M., & Klueppel, D.
    (2001) Pseudohomophone effects in lexical decision: Still a challenge for current word recognition models. Journal of Experimental Psychology: Human Perception & Performance, 27, 547–559.
    [Google Scholar]
/content/journals/10.1075/ssol.18002.jac
Loading
/content/journals/10.1075/ssol.18002.jac
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error