Volume 12, Issue 1-2
  • ISSN 2210-4372
  • E-ISSN: 2210-4380
Buy:$35.00 + Taxes


Short Abstract

The commonplace that monster stories disguise collective anxiety is evaluated within the frame of nine Artificial Intelligence-themed films produced from 1979 and 2018. I conducted a machine learning classification task with the open-source platform toward illustrating those films’ resonance with Shelley’s 1818 . This study concludes by calling for substitution of text sets in order to answer pressing questions in the digital humanities. In doing so I assert the cognitive mapping potential revealed in computer-aided reading.


Article metrics loading...

Loading full text...

Full text loading...


  1. Abbate, A., & McAnuff, D. (Producers) and Bird, B.
    (Director) The iron giant. Warner Bros 1999.
    [Google Scholar]
  2. Aguirre, M.
    (2013) Gothic Fiction and Folk-Narrative Structure: The case of Mary Shelley’s Frankenstein. Gothic Studies, 15(2), 1–18. 10.7227/GS.15.2.1
    https://doi.org/10.7227/GS.15.2.1 [Google Scholar]
  3. Argamon, Shlomo and Olsen, Mark
    (2009) Words, patterns and documents: Experiments in machine learning and text analysis. Digitial Humanities Quarterly, 3.2. Retrievedwww.digitalhumanities.org/dhq/vol/3/2/000041/000041.html
    [Google Scholar]
  4. Azeri, S.
    (2019) Surplus-population and the political economy of fear. Critical Sociology, 451, 889–905. 10.1177/0896920517737143
    https://doi.org/10.1177/0896920517737143 [Google Scholar]
  5. Bantilan, N., Malgaroli, M., Ray, B., & Hull, T. D.
    (2021) Just in time crisis response: suicide alert system for telemedicine psychotherapy settings. Psychotherapy Research, 31(3), 302–312. 10.1080/10503307.2020.1781952
    https://doi.org/10.1080/10503307.2020.1781952 [Google Scholar]
  6. Becker, V. D., & Neuberg, S. L.
    (2019) Archetypes reconsidered as emergent outcomes of cognitive complexity and evolved motivational systems. Psychological Inquiry, 30(2), 59–75. 10.1080/1047840X.2019.1614795
    https://doi.org/10.1080/1047840X.2019.1614795 [Google Scholar]
  7. Benford, C.
    (2010) “Listen to my tale”: Multilevel structure, narrative sense making, and the inassimilable in Mary Shelley’s Frankenstein. Narrative, 18(3), 324–346. 10.1353/nar.2010.0000
    https://doi.org/10.1353/nar.2010.0000 [Google Scholar]
  8. Britton, R.
    (2015) Mary Shelley’s Frankenstein: what made the Monster monstrous?Journal of Analytical Psychology, 60(1), 1–11. 10.1111/1468‑5922.12126
    https://doi.org/10.1111/1468-5922.12126 [Google Scholar]
  9. Burch, Robert
    (2021) Charles Sanders Peirce. Stanford Encyclopedia of Philosophy. AccessedApril 24, 2023, Charles Sanders Peirce (Stanford Encyclopedia of Philosophy)
    [Google Scholar]
  10. Cakir, F., He, K., Xia, X., Kulis, B., & Sclaroff, S.
    (2019) Deep Metric Learning to rank. InProceedings IEEE Conference on Computer Vision and Pattern Recognition. Retrievedhttps://openaccess.thecvf.com/content_CVPR_2019/papers/Cakir_Deep_Metric_Learning_to_Rank_CVPR_2019_paper.pdf. 10.1109/CVPR.2019.00196
    https://doi.org/10.1109/CVPR.2019.00196 [Google Scholar]
  11. Cameron, James, director, and Sigourney Weaver, Michael Biehn, and Carrie Henn
    actors Aliens, Twentieth Century Fox 1986.
    [Google Scholar]
  12. Carroll, John B.
    (1993) Human cognitive abilities: A survey of factor-analytical studies. New York: Cambridge University Press. 10.1017/CBO9780511571312
    https://doi.org/10.1017/CBO9780511571312 [Google Scholar]
  13. Dawkins, R.
    (1976/2006) The selfish gene. New York, NY: Oxford University Press.
    [Google Scholar]
  14. Fish, S.
    (2012, January23). Mind your P’s and B’s: The digital humanities and interpretation. The New York TimesOpinion section. AccessedFebruary 8, 2023The Digital Humanities and Interpretation – The New York Times (nytimes.com).
    [Google Scholar]
  15. Friedman, Jerome, Hastie, Trevor, and Tibshirani, Rob
    (2010) “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Software, 33(1), pp.1–22. Retrievedhttps://www.jstatsoft.org/v33/i01/. 10.18637/jss.v033.i01
    https://doi.org/10.18637/jss.v033.i01 [Google Scholar]
  16. Gallese, V.
    (2001) ‘The ‘shared manifold’ hypothesis. Journal of Consciousness Studies, 81, 5–7, 33–50.
    [Google Scholar]
  17. Goodlad, M. E.
    (2020) A study in distant reading: Genre and the Longue Durée in the age of AI. Modern Language Quarterly, 81(4) 10.1215/00267929‑8637937
    https://doi.org/10.1215/00267929-8637937 [Google Scholar]
  18. Goodwyn, Erik
    (2013) Recurrent motifs as resonant attractor states in the narrative field: A testable model of archetype. The journal of analytical psychology, 581, 387–408. 10.1111/1468‑5922.12020
    https://doi.org/10.1111/1468-5922.12020 [Google Scholar]
  19. Grimstad, P.
    (2014) Against Research: Literary Studies and the Trouble with Discourse. American Literary History, 26(4), 647–663. 10.1093/alh/aju050
    https://doi.org/10.1093/alh/aju050 [Google Scholar]
  20. Jockers, M.
    (2013) Macroanalysis: Digital methods and literary history, 4(1). 10.5406/illinois/9780252037528.001.0001
    https://doi.org/10.5406/illinois/9780252037528.001.0001 [Google Scholar]
  21. Haraway, D.
    (1984) A manifesto for cyborgs: Science, technology, and socialist feminism in the 1980s. Retrieved fromhttps://sites.evergreen.edu/politicalshakespeares/wp-content/uploads/sites/226/2015/12/Haraway-Cyborg-Manifesto-2.pdf
  22. Johnson, B.
    (1982) My mother, my self. Diacritics, 121: 2–10. 10.2307/464674
    https://doi.org/10.2307/464674 [Google Scholar]
  23. Kozel, P.
    (2014) Monsters of the market: Zombies, vampires and global capitalism. Rethinking Marxism, 261: 294–296. 10.1080/08935696.2014.885220
    https://doi.org/10.1080/08935696.2014.885220 [Google Scholar]
  24. Lang, F.
    director Metropolis. Universum Film A.G. 1927.
    [Google Scholar]
  25. Lehman, S.
    (1992) The motherless child in science fiction: “Frankenstein” and “Moreau” (L’Orphelin de mère dans la science fiction: “Frankenstein” et “Moreau”). Science Fiction Studies, 191: 49–58.
    [Google Scholar]
  26. Mason, S. J. and Graham, N. E.
    (2002) Areas beneath the Relative Operating Characteristics (ROC) and Relative Operating Levels (ROL) curves: Statistical significance and interpretation. Quarterly Journal of the Royal Meteorological Society, 1281, pp.2145–2166. 10.1256/003590002320603584
    https://doi.org/10.1256/003590002320603584 [Google Scholar]
  27. Miller, T.
    (2009) Frankenstein without Frankenstein: “The Iron Giant” and the absent creator. Journal of the Fantastic in the Arts, 201, 385–405.
    [Google Scholar]
  28. Mast, M. S., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., & Choudhury, T.
    (2015) Social sensing for psychology: Automated interpersonal behavior assessment. Current Directions in Psychological Science, 241: 154–160. 10.1177/0963721414560811
    https://doi.org/10.1177/0963721414560811 [Google Scholar]
  29. Milton, J.
    (1957/1667) Paradise Lost (as appeared inMerritt Y. Hughes (Ed.) John Milton: Complete poems and major prose. New York, NY: Odyssey Press, 211–469.
    [Google Scholar]
  30. Mohamed, E. H., Moussa, M. E., & Haggag, M. H.
    (2020) An enhanced sentiment analysis framework based on pre-trained word embedding. International Journal of Computational Intelligence & Applications, 191: 2050025. 10.1142/S1469026820500315
    https://doi.org/10.1142/S1469026820500315 [Google Scholar]
  31. Mori, M.
    (1970/2012) Trans. by Karl F. MacDorman & Norri Kageki. The uncanny valley. Energy, 7(4), 33–35. AccessedFebruary 8, 2023The Uncanny Valley: The Original Essay by Masahiro Mori – IEEE Spectrum (purdue.edu)
    [Google Scholar]
  32. Nagy, P., Eschrich, J., Wylie, R., & Finn, E.
    (2018) Why Frankenstein is a stigma among scientists. Science & Engineering Ethics, 24(4), 1143–1159. 10.1007/s11948‑017‑9936‑9
    https://doi.org/10.1007/s11948-017-9936-9 [Google Scholar]
  33. Nichols, R., Lynn, J., & Purzycki, B. G.
    (2014) Toward a science of science fiction: Applying quantitative methods to genre individuation. Scientific Study of Literature, 4(1), 25–45. 10.1075/ssol.4.1.02nic
    https://doi.org/10.1075/ssol.4.1.02nic [Google Scholar]
  34. Peng, X., Dai, R., Ma, Y., Lin, B., Hui, X., Chen, X., & Lv, R.
    (2022) Early diagnosis and bioimaging of lung adenocarcinoma cells/organs based on spectroscopy machine learning. Journal of Innovative Optical Health Sciences, 15(2), 1–15. 10.1142/S1793545822500110
    https://doi.org/10.1142/S1793545822500110 [Google Scholar]
  35. Pennebaker, James W., & Ireland, Molly E.
    (2011) Using literature to understand authors: The case for computerized text analysis. Scientific Study of Literature, 11, 34–48. 10.1075/ssol.1.1.04pen
    https://doi.org/10.1075/ssol.1.1.04pen [Google Scholar]
  36. Pezzulo, G., Barsalou, L. W., Angelo Cangelosi, A., Martin H. Fischer, M. H., Ken McRae, K. & Spivey, M. J.
    (2012) Computational grounded cognition: A new alliance between grounded cognition and computational modeling. Frontiers in Psychology, 31, 1–11.
    [Google Scholar]
  37. Poovey, M.
    (1980) My hideous progeny: Mary Shelley and the feminization of Romanticism. PMLA, 951, 332–347. 10.2307/461877
    https://doi.org/10.2307/461877 [Google Scholar]
  38. Rabunal, J. R., & Dorado, J.
    (2006) Artificial neural networks in real-life applications. Hershey, PA: Idea Group Pub. 10.4018/978‑1‑59140‑902‑1
    https://doi.org/10.4018/978-1-59140-902-1 [Google Scholar]
  39. Reese, D.
    (2006) A Troubled Legacy: Mary Shelley’s “Frankenstein” and the Inheritance of Human Rights. Representations, 96(1), 48–72. 10.1525/rep.2006.96.1.48
    https://doi.org/10.1525/rep.2006.96.1.48 [Google Scholar]
  40. Rogers, K. B.
    (2018) The Monstrous Idea in Mary Shelley’s Frankenstein. Literature & Medicine, 36(2), 356–371. 10.1353/lm.2018.0018
    https://doi.org/10.1353/lm.2018.0018 [Google Scholar]
  41. Schmank, Christopher J., Goring, Sara Anne, Kovacs, Kristof, & Conway, Andrew A. R.
    (2019) Psychometric network analysis of the Hungarian WAIS. Journal of Intelligence, 7 (21). 10.3390/jintelligence7030021
    https://doi.org/10.3390/jintelligence7030021 [Google Scholar]
  42. Scott, Ridley, director, & Sigourney Weaver, Tom Skerrit, John Hurt
    actors Alien. Twentieth Century Fox 1979.
    [Google Scholar]
  43. Scott, Ridley, director, & Harrison Ford, Rutger Hauer, and Sean Young
    actors Blade Runner. Warner Bros 1982.
    [Google Scholar]
  44. Selivanov, D.
    “Text2vec.” Retrievedtext2vec.org
  45. Shelley, M. S.
    (1818) Frankenstein, or the Modern Promotheus. Public domain. AccessedNovember 21, 2021gutenberg.org/files/84/84-0.txt
    [Google Scholar]
  46. Szollosy, M.
    (2017) Freud, Frankenstein and our fear of robots: Projection in our cultural perception of technology. AI & Society, 321: 433–439. 10.1007/s00146‑016‑0654‑7
    https://doi.org/10.1007/s00146-016-0654-7 [Google Scholar]
  47. Ta, A., Han Leong Goh, Chuen Seng Tan, Yan Sun, Khin Chaw Yu Aung, Zsin Woon Teoh, Bryan Tan, K., Zheng Yi Lau, Abisheganaden, J. A., Kheng Hock Lee, Wong, S. F., Wai Leng Chow, Kumar, P. V., Zi Chao Choong, Ng, C., Ang, C., Chan, M., Lim, D., & Cheng Ooi Low
    (2019) Identifying prospective frequent readmitters for hospital to home intervention using machine learning. International Journal of Integrated Care (IJIC), 19(S1), 1–2. 10.5334/ijic.s3228
    https://doi.org/10.5334/ijic.s3228 [Google Scholar]
  48. Tello, J. C.
    (2021) Corpus of novels of the Spanish Silver Age. The novel in the Spanish silver age: A digital analysis of genre using machine learning. Bielefeld, Germany: Bielefeld University Press. 10.2307/j.ctv2f9xsw7
    https://doi.org/10.2307/j.ctv2f9xsw7 [Google Scholar]
  49. Thomson, D.
    (2023) Whitman tracked between editions, Rossetti as a complex subversive, and the collected sense of authorship: A mixed methods accounting of a hyperlinked ‘Calamus.’Digital Humanities Quarterly, 17(1). AccessedFebruary 8, 2023DHQ: Digital Humanities Quarterly: Whitman Tracked Between Editions, Rossetti as a Complex Subversive, and the Collective Sense of Authorship: A Mixed Methods Accounting of a Hyperlinked Calamus
    [Google Scholar]
  50. (2017) Prelude as lifespan gauge: Quantifying psychological processes over time. Scientific Study of Literature, 71, 232–256. 10.1075/ssol.16023.tho
    https://doi.org/10.1075/ssol.16023.tho [Google Scholar]
  51. Tixier, A. J., Hallowell, M. R., Rajagopalan, B., & Bowman, D.
    (2016) Automated content analysis for construction safety: A natural language processing system to extract precursors and outcomes from unstructured injury reports. Automation in Construction, 621, 45–56. 10.1016/j.autcon.2015.11.001
    https://doi.org/10.1016/j.autcon.2015.11.001 [Google Scholar]
  52. Tomlinson, B.
    (2018) Artificial entertainment: A century of AI in film. Interesting Engineering. AccessedFebruary 14, 2021, https://interestingengineering.com/artificial-entertainment-a-century-of-ai-in-film
    [Google Scholar]
  53. Tou, H., Yao, L., Wei, Z., Zhuang, X., & Zhang, B.
    (2018) Automatic infection detection based on electronic medical records. BMC Bioinformatics, 191, 55–63. 10.1186/s12859‑018‑2101‑x
    https://doi.org/10.1186/s12859-018-2101-x [Google Scholar]
  54. Underwood, T.
    (2017) A genealogy of distant reading. Digital Humanities Quarterly11 (2). AccessedFebruary 8, 2023DHQ: Digital Humanities Quarterly: A Genealogy of Distant Reading
    [Google Scholar]
  55. Turner, C. A., Jacobs, A. D., Marques, C. K., Oates, J. C., Kamen, D. L., Anderson, P. E., & Obeid, J. S.
    (2017) Word2Vec inversion and traditional text classifiers for phenotyping lupus. BMC Medical Informatics and Decision Making, 17(1), 126. 10.1186/s12911‑017‑0518‑1
    https://doi.org/10.1186/s12911-017-0518-1 [Google Scholar]
  56. Wang, Yanshan, Zhao, Yiqing, Therneau, Terry M., Atkinson, Elizabeth J., Tafti, Ahmad, Zhang, Nan, Shreyasee, Amin, Limper, Andrew H., Khosla, S., & Hongfang, L.
    (2020) Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. Journal of Biomedical Infomatics, 1021. 10.1016/j.jbi.2019.103364
    https://doi.org/10.1016/j.jbi.2019.103364 [Google Scholar]
  57. Wei-Hung, Weng, Wagholikar, K. B., McCray, A. T., Szolovits, P., Chueh, H. C., & Weng, W.- H.
    (2017) Medical subdomain classification of clinical notes using a machine learning- based natural language processing approach. BMC Medical Informatics & Decision Making, 171, 1–13. 10.1186/s12911‑017‑0556‑8
    https://doi.org/10.1186/s12911-017-0556-8 [Google Scholar]
  58. Wells, H. G.
    (2014/1896) The Island of Dr. Moreau. New York, NY: Mass Market Paperbacks.
    [Google Scholar]
  59. Whale, J.
    director Frankenstein. Universal 1931.
    [Google Scholar]
  60. Yan, H., Fitzsimmons, C. E. E., Goodman, M., Krauss, M., Das, S., & Cavazos, R. P.
    (2019) Automatic detection of eating disorder-related social media posts that could benefit from a mental health intervention. International Journal of Eating Disorders, 52(10), 1150–1156. 10.1002/eat.23148
    https://doi.org/10.1002/eat.23148 [Google Scholar]
  61. Yarkoni, T.
    (2012) Psychoinformatics: New horizons at the interface of the psychological and computing sciences. Current Directions in Psychological Science, 211, 391–397. 10.1177/0963721412457362
    https://doi.org/10.1177/0963721412457362 [Google Scholar]
  62. Yinying, W., Bowers, A. J., & Fikis, D. J.
    (2017) Automated text data mining analysis of five decades of educational leadership research literature. Educational Administration Quarterly, 53(2), 289–323. 10.1177/0013161X16660585
    https://doi.org/10.1177/0013161X16660585 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
Keyword(s): digital humanities; Frankenstein; machine learning; semantic measurement
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error