1887
Volume 7 Number 1
  • ISSN 2210-4372
  • E-ISSN: 2210-4380
USD
Buy:$35.00 + Taxes

    What’s in the brain that ink may character ….

    A quantitative narrative analysis of Shakespeare’s 154 sonnets for use in (Neuro-)cognitive poetics

  • Author(s): Arthur M. Jacobs 1, 2, 3 , Sarah Schuster 3, 4 , Shuwei Xue 3  and Jana Lüdtke 2, 3
  • View Affiliations Hide Affiliations
    Affiliations:
    1 Center for Cognitive Neuroscience Berlin (CCNB), Berlin, Germany
    2 Dahlem Institute for Neuroimaging of Emotion (D.I.N.E.), Berlin, Germany
    3 Department of Experimental and Neurocognitive Psychology, Freie Universität, Berlin, Germany
    4 Universität Salzburg, Centre for Cognitive Neuroscience, Salzburg, Austria
  • Source: Scientific Study of Literature, Volume 7, Issue 1, 2017, p. 4 - 51
  • DOI: https://doi.org/10.1075/ssol.7.1.02jac
    • Version of Record published : 23 Nov 2017

Abstract

In this theoretical paper, we would like to pave the ground for future empirical studies in Neurocognitive Poetics by describing relevant properties of extracted via Quantitative Narrative Analysis. In the first two parts, we quantify aspects of the sonnets’ cognitive and affective-aesthetic features, as well as indices of their thematic richness, symbolic imagery, and semantic association potential. In the final part, we first demonstrate how the results of these quantitative narrative analyses can be used for generating testable predictions for empirical studies of literature. Second, we feed the quantitative narrative analysis data into a machine learning algorithm which successfully classifies the 154 sonnets into two main categories, i.e. the and poems. This shows how quantitative narrative analysis data can be combined with computational modeling for identifying those of the many quantifiable sonnet features that may play a key role in their reception.

Loading

Article metrics loading...

/content/journals/10.1075/ssol.7.1.02jac
2017-11-23
2019-10-23
Loading full text...

Full text loading...

References

  1. Altmann, U. , Bohrn, I. C. , Lubrich, O. , Menninghaus, W. , & Jacobs, A. M.
    (2012) The power of emotional valence-from cognitive to affective processes in reading. Frontiers in Human Neuroscience, 6(192). doi: 10.3389/fnhum.2012.00192
    https://doi.org/10.3389/fnhum.2012.00192 [Google Scholar]
  2. (2014) Fact vs fiction-how paratextual information shapes our reading processes. Social Cognitive and Affective Neuroscience, 9(1), 22–29. doi: 10.1093/scan/nss098
    https://doi.org/10.1093/scan/nss098 [Google Scholar]
  3. Anderson, T. , & Crossley, S.
    (2011) “Rue with a Difference: A Stylistic Analysis of the Rhetoric of Suicide in Hamlet ” (pp.192–214). In Jonathan Culpepper and Mireille Ravassat (Eds.), Stylistics and Shakespeare’s language: Transdisciplinary approaches. Bloomsbury.
    [Google Scholar]
  4. Aryani, A. , Jacobs, A. M. , & Conrad, M.
    (2013) Extracting salient sublexical units from written texts: “Emophon,” a corpus-based approach to phonological iconicity. Frontiers in Psychology, 4:654. doi: 10.3389/fpsyg.2013.00654
    https://doi.org/10.3389/fpsyg.2013.00654 [Google Scholar]
  5. Aryani, A. , Kraxenberger, M. , Ullrich, S. , Jacobs, A. M. , & Conrad, M.
    (2016) Measuring the ba- sic a ective tone of poems via phonological saliency and iconicity. Psychology of Aesthetics, Creativity, and the Arts, 10, 191–204. doi: 10.1037/aca0000033
    https://doi.org/10.1037/aca0000033 [Google Scholar]
  6. Beaty, R. E. , Benedek, M. , Silvia, P. J. , & Schacter, D. L.
    (2016) Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 87–95. doi: 10.1016/j.tics.2015.10.004
    https://doi.org/10.1016/j.tics.2015.10.004 [Google Scholar]
  7. Berlyne, D. E.
    (1971) Aesthetics and Psychobiology. New York: Appleton-Century-Crofts.
    [Google Scholar]
  8. Bestgen, Y.
    (1994) Can emotional valence in stories be determined from words?. Cognition & Emotion, 8(1), 21–36. doi: 10.1080/02699939408408926
    https://doi.org/10.1080/02699939408408926 [Google Scholar]
  9. Bohrn, I. C. , Altmann, U. , & Jacobs, A. M.
    (2012a) Looking at the brains behind figurative language – A quantitative meta-analysis of neuroimaging studies on metaphor, idiom and irony processing. Neuropsychologia, 50, 2669–2683. doi: 10.1016/j.neuropsychologia.2012.07.021
    https://doi.org/10.1016/j.neuropsychologia.2012.07.021 [Google Scholar]
  10. Bohrn, I. C. , Altmann, U. , Lubrich, O. , Menninghaus, W. , & Jacobs, A. M.
    (2012b) Old proverbs in new skins – an FMRI study on defamiliarization. Frontiers in Psychology, 3:204. doi: 10.3389/fpsyg.2012.00204
    https://doi.org/10.3389/fpsyg.2012.00204 [Google Scholar]
  11. (2013) When we like what we know – A parametric fMRI analysis of beauty and familiarity. Brain and Language, 124(1), 1–8. doi: 10.1016/j.bandl.2012.10.003
    https://doi.org/10.1016/j.bandl.2012.10.003 [Google Scholar]
  12. Boston, M. F. , Hale, J. , Kliegl, R. , Patil, U. , & Vasishth, S.
    (2008) Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam Sentence Corpus. Journal of Eye Movement Research, 2(1), 1–12. doi: 10.16910/jemr.2.1.1
    https://doi.org/10.16910/jemr.2.1.1 [Google Scholar]
  13. Boyd, B.
    (2012) Why lyrics last: Evolution, Cognition, and Shakespeare’s Sonnets. Harvard University Press. doi: 10.4159/harvard.9780674064843
    https://doi.org/10.4159/harvard.9780674064843 [Google Scholar]
  14. Bradley, M. M. , & Lang, P. J.
    (1999) Affective Norms for English Words (ANEW): Stimuli Instruction and Affective Ratings Technical Report C-1. Gainesville, FL: University of Florida.
    [Google Scholar]
  15. Briesemeister, B. B. , Kuchinke, L. , & Jacobs, A. M.
    (2011) Discrete emotion norms for nouns: Berlin affective word list (DENN – BAWL). Behavior Research Methods, 43(2), 441–448. doi: 10.3758/s13428‑011‑0059‑y
    https://doi.org/10.3758/s13428-011-0059-y [Google Scholar]
  16. (2014) Emotion word recognition: Discrete information effects first, continuous later?. Brain Research, 1564, 62–71. doi: 10.1016/j.brainres.2014.03.045
    https://doi.org/10.1016/j.brainres.2014.03.045 [Google Scholar]
  17. Briesemeister, B. B. , Kuchinke, L. , Jacobs, A. M. , & Braun, M.
    (2015) Emotions in reading: Dissociation of happiness and positivity. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 287–298. doi: 10.3758/s13415‑014‑0327‑2
    https://doi.org/10.3758/s13415-014-0327-2 [Google Scholar]
  18. Brown, S. , Gao, X. , Tisdelle, L. , Eickhoff, S. B. , & Liotti, M.
    (2011) Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities. Neuroimage, 58(1), 250–258. doi: 10.1016/j.neuroimage.2011.06.012
    https://doi.org/10.1016/j.neuroimage.2011.06.012 [Google Scholar]
  19. Brysbaert, M. , & New, B.
    (2009) Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. doi: 10.3758/BRM.41.4.977
    https://doi.org/10.3758/BRM.41.4.977 [Google Scholar]
  20. Burke, M.
    (2011) Literary reading, cognition and emotion: An exploration of the oceanic mind. London: Routledge.
    [Google Scholar]
  21. (2015) The neuroaesthetics of prose fiction: Pitfalls, parameters and prospects. Frontiers in Human Neuroscience, 9. doi: 10.3389/fnhum.2015.00442
    https://doi.org/10.3389/fnhum.2015.00442 [Google Scholar]
  22. Chatterjee, A. , & Vartanian, O.
    (2014) Neuroaesthetics. Trends in Cognitive Sciences, 18(7), 370–375. doi: 10.1016/j.tics.2014.03.003
    https://doi.org/10.1016/j.tics.2014.03.003 [Google Scholar]
  23. Chen, Q. , Zhang, J. , Xu, X. , Scheepers, C. , Yang, Y. , & Tanenhaus, M. K.
    (2016) Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11–21. doi: 10.1016/j.cognition.2016.05.007
    https://doi.org/10.1016/j.cognition.2016.05.007 [Google Scholar]
  24. Citron, F. M.
    (2012) Neural correlates of written emotion word processing: a review of recent electrophysiological and hemodynamic neuroimaging studies. Brain and Language, 122(3), 211–226. doi: 10.1016/j.bandl.2011
    https://doi.org/10.1016/j.bandl.2011 [Google Scholar]
  25. Cook, A.
    (2010) Shakespearean neuroplay: Reinvigorating the study of dramatic texts and performance through cognitive science. NY: Palgrave Macmillan doi: 10.1057/9780230113053
    https://doi.org/10.1057/9780230113053 [Google Scholar]
  26. Crane, M. T.
    (2001) Shakespeare’s Brain: Reading with Cognitive Theory. Princeton University Press.
    [Google Scholar]
  27. Crossley, S. A. , Kyle, K. , & McNamara, D. S.
    (2016) The tool for the automatic analysis of text cohesion (TAACO): Automatic assessment of local, global, and text cohesion. Behavior Research Methods, 48(4), 1227–1237. doi: 10.3758/s13428‑015‑0651‑7
    https://doi.org/10.3758/s13428-015-0651-7 [Google Scholar]
  28. (2017) Sentiment Analysis and Social Cognition Engine (SEANCE): An automatic tool for sentiment, social cognition, and social-order analysis. Behavior Research Methods, 49(3), 803–821. doi: 10.3758/s13428‑016‑0743‑z
    https://doi.org/10.3758/s13428-016-0743-z [Google Scholar]
  29. Crystal, D.
    (2012) Think on my Words: Exploring Shakespeare's Language (Canto Classics). Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139196994
    https://doi.org/10.1017/CBO9781139196994 [Google Scholar]
  30. Cupchik, G. C.
    (1986) A decade after Berlyne: New directions in experimental aesthetics. Poetics, 15(4–6), 345–369. doi: 10.1016/0304‑422X(86)90003‑3
    https://doi.org/10.1016/0304-422X(86)90003-3 [Google Scholar]
  31. De Beaugrande, R. A.
    (1979) Toward a general theory of creativity. Poetics, 8(3), 269–306. doi: 10.1016/0304‑422X(79)90036‑6
    https://doi.org/10.1016/0304-422X(79)90036-6 [Google Scholar]
  32. Delmonte, R.
    (2016) Exploring Shakespeare’s Sonnets with SPARSAR. Linguistics and Literature Studies, 4(1), 61–95. doi: 10.13189/lls.2016.040110
    https://doi.org/10.13189/lls.2016.040110 [Google Scholar]
  33. Dietterich, T. G.
    (2000) An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2), 139–157. doi: 10.1023/A:1007607513941
    https://doi.org/10.1023/A:1007607513941 [Google Scholar]
  34. Dixon, P. , & Bortolussi, M.
    (2015) Measuring literary experience. Scientific Study of Literature, 5(2), 178–182. doi: 10.1075/ssol.5.2.03dix
    https://doi.org/10.1075/ssol.5.2.03dix [Google Scholar]
  35. Fellbaum, C.
    (Ed.) (1998) WordNet: An electronic lexical database. Cambridge: MIT Press.
  36. Forgács, B. , Bohrn, I. , Baudewig, J. , Hofmann, M. J. , Pléh, C. , & Jacobs, A. M.
    (2012) Neural correlates of combinatorial semantic processing of literal and figurative noun noun compound words. Neuroimage, 63(3), 1432–1442. doi: 10.1016/j.neuroimage.2012.07.029
    https://doi.org/10.1016/j.neuroimage.2012.07.029 [Google Scholar]
  37. Frank, S. L.
    (2013) Uncertainty reduction as a measure of cognitive load in sentence comprehension. Topics in Cognitive Science, 5(3), 475–494. doi: 10.1111/tops.12025
    https://doi.org/10.1111/tops.12025 [Google Scholar]
  38. Frank, S. L. , Otten, L. J. , Galli, G. , & Vigliocco, G.
    (2015) The ERP response to the amount of information conveyed by words in sentences. Brain and Language, 140, 1–11. doi: 10.1016/j.bandl.2014.10.006
    https://doi.org/10.1016/j.bandl.2014.10.006 [Google Scholar]
  39. Goldman, A. I.
    (2006) Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford University Press. doi: 10.1093/0195138929.001.0001
    https://doi.org/10.1093/0195138929.001.0001 [Google Scholar]
  40. Graesser, A. C. , McNamara, D. S. , Louwerse, M. M. , & Cai, Z.
    (2004) Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, 36(2), 193–202. doi: 10.3758/BF03195564
    https://doi.org/10.3758/BF03195564 [Google Scholar]
  41. Graesser, A. C. , & McNamara, D. S.
    (2010) Computational analyses of multilevel discourse comprehension. Topics in Cognitive Science, 3(2), 371–398. doi: 10.1111/j.1756‑8765.2010.01081.x
    https://doi.org/10.1111/j.1756-8765.2010.01081.x [Google Scholar]
  42. Graesser, A. C. , Dowell, N. , & Moldovan, C.
    (2011) A computer’s understanding of literature. Scientific Study of Literature, 1(1), 24–33. doi: 10.1075/ssol.1.1.03gra
    https://doi.org/10.1075/ssol.1.1.03gra [Google Scholar]
  43. Green, M. C. , & Brock, T. C.
    (2000) The role of transportation in the persuasiveness of public narratives. Journal of Personality and Social Psychology, 79(5), 701–721. doi: 10.1037/0022‑3514.79.5.701
    https://doi.org/10.1037/0022-3514.79.5.701 [Google Scholar]
  44. Grünbein, D.
    (1996) Katze und Mond. In D. Grünbein (Eds) Galilei Vermisst Dantes Hölle und Bleibt an den Maßen Hängen (pp.116–128). Frankfurt AM: Suhrkamp.
    [Google Scholar]
  45. Habermas, T. , & de Silveira, C.
    (2008) The development of global coherence in life narratives across adolescence: Temporal, causal, and thematic aspects. Developmental Psychology, 44(3), 707–721. doi: 10.1037/0012‑1649.44.3.707
    https://doi.org/10.1037/0012-1649.44.3.707 [Google Scholar]
  46. Harker, W. J.
    (1997) Literary texts as models: Implications for the empirical study of literature. In S. Tötösy de Zepetnek & I. Sywenky (Eds.), The systemic and empirica lapproach to literature and culture as theory and application (pp.51–65). Edmonton, Canada: University of Alberta.
    [Google Scholar]
  47. Hofmann, M. J. , & Jacobs, A. M.
    (2014) Interactive activation and competition models and semantic context: From behavioral to brain data. Neuroscience & Biobehavioral Reviews, 46, 85–104. doi: 10.1016/j.neubiorev.2014.06.011
    https://doi.org/10.1016/j.neubiorev.2014.06.011 [Google Scholar]
  48. Hope, J. , & Witmore, M.
    (2004) The very large textual object: a prosthetic reading of Shakespeare. Early Modern Literary Studies, 9(3), 1–36.
    [Google Scholar]
  49. Hsu, C. T. , Conrad, M. , & Jacobs, A. M.
    (2014) Fiction feelings in Harry Potter: Haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience. Neuroreport, 25(17), 1356–1361. doi: 10.1097/WNR.000000000000
    https://doi.org/10.1097/WNR.000000000000 [Google Scholar]
  50. Hsu, C. T. , Jacobs, A. M. , Citron, F. M. , & Conrad, M.
    (2015) The emotion potential of words and passages in reading Harry Potter – An fMRI study. Brain and Language, 142, 96–114. doi: 10.1016/j.bandl.2015.01.011
    https://doi.org/10.1016/j.bandl.2015.01.011 [Google Scholar]
  51. Hutcheon, L.
    (2012) A Theory of Adaptation. 2nd editionwith Siobhan O’Flynn. London and New York: Routledge.
    [Google Scholar]
  52. Hutchins, R.
    (Ed.) (1952) Great books of the Western world (54vols.), Chicago: University of Chicago Press.
    [Google Scholar]
  53. Jacobs, A. M.
    (2011) Neurokognitive Poetik: Elemente eines Modells des literarischen Lesens [Neurocognitive poetics: Elements of a model of literary reading]. In R. Schrott and A. M. Jacobs (Eds.), Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren [Brain and poetry: How we construct our realities] (pp.492–520). Munich: Carl Hanser.
    [Google Scholar]
  54. (2015a) Towards a neurocognitive poetics model of literary reading, in R. Willems (Ed.) Towards a Cognitive Neuroscience of Natural Language Use (pp.135–159). Cambridge: Cambridge University Press. doi: 10.1017/CBO9781107323667.007
    https://doi.org/10.1017/CBO9781107323667.007 [Google Scholar]
  55. (2015b) Neurocognitive poetics: Methods and models for investigating the neuronal and cognitive-affective bases of literature reception. Frontiers in Human Neuroscience, 9:186. doi: 10.3389/fnhum.2015.0018
    https://doi.org/10.3389/fnhum.2015.0018 [Google Scholar]
  56. (2015c) The scientific study of literary experience. Scientific Study of Literature, 5(2), 139–170. doi: 10.1075/ssol.5.2.01jac
    https://doi.org/10.1075/ssol.5.2.01jac [Google Scholar]
  57. Jacobs, A.
    (2016a) The scientific study of literary experience and neuro-behavioral responses to Literature: Reply to Commentaries. Scientific Study of Literature, 6(1), 164–174. doi: 10.1075/ssol.6.1.08jac
    https://doi.org/10.1075/ssol.6.1.08jac [Google Scholar]
  58. Jacobs, A. M. , and Kinder, A.
    (2015) Worte als Worte erfahren: wie erarbeitet das Gehirn Gedichte (Experience words as words: how the brain constructs poems), in A. Pompe (Ed.) Kind und Gedicht [Child and Poem] (pp.57–76). Berlin: Rombach.
    [Google Scholar]
  59. Jacobs, A. M. , & Kinder, A.
    (2017) The brain is the prisoner of thought: A machine-learning assisted quantitative narrative analysis of literary metaphors for use in Neurocognitive Poetics. Metaphor & Symbol, in press. doi: 10.1080/10926488.2017.1338015
    https://doi.org/10.1080/10926488.2017.1338015 [Google Scholar]
  60. Jacobs, A. M. , and Schrott, R.
    (2015) Gefesselt im Kopfkino: Von Kippschaltern, Madeleine Effekten und Don Quichote Syndromen bei der Immersion in Textwelten (Captivated in the mind’s cinema: Of trigger-switches, Don Quichote syndroms and immersion in text worlds). Available online at: FIKTION.CC
    [Google Scholar]
  61. Jacobs, A. M. , Võ, M. L. H. , Briesemeister, B. B. , Conrad, M. , Hofmann, M. J. , Kuchinke, L. , Lüdtke, J. & Braun, M.
    (2015) 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?. Frontiers in Psychology, 6:714. doi: 10.3389/fpsyg.2015.00714
    https://doi.org/10.3389/fpsyg.2015.00714 [Google Scholar]
  62. Jacobs, A. M. , Lüdtke, J. , Aryani, A. , Meyer-Sickendieck, B. , & Conrad, M.
    (2016a) Mood-empathic and aesthetic responses in poetry reception. Scientific Study of Literature, 6(1), 87–130. doi: 10.1075/ssol.6.1.06jac
    https://doi.org/10.1075/ssol.6.1.06jac [Google Scholar]
  63. Jacobs, A. , Hofmann, M. J. , & Kinder, A.
    (2016b) On elementary affective decisions: To like or not to like, that is the question. Frontiers in Psychology, 7:1836. doi: 10.3389/fpsyg.2016.01836
    https://doi.org/10.3389/fpsyg.2016.01836 [Google Scholar]
  64. Jacobsen, T.
    (2006) Bridging the arts and sciences: A framework for the psychology of aesthetics. Leonardo, 39, 155–162. doi: 10.1162/leon.2006.39.2.155
    https://doi.org/10.1162/leon.2006.39.2.155 [Google Scholar]
  65. Jakobson, R. , & Jones, L. G.
    (1970) Shakespeare’s Verbal Art in Th’Expence of Spirit (No.35). Walter de Gruyter.
    [Google Scholar]
  66. Jakobson, R. , & Lévi-Strauss, C.
    (1962) “Les chats” de Charles Baudelaire. L’homme, 2, 5–21. doi: 10.3406/hom.1962.366446
    https://doi.org/10.3406/hom.1962.366446 [Google Scholar]
  67. Kintsch, W.
    (2000) Metaphor comprehension: A computational theory. Psychonomic Bulletin & Review, 7(2), 257–266. doi: 10.3758/bf03212981
    https://doi.org/10.3758/bf03212981 [Google Scholar]
  68. (2012) Musings about beauty. Cognitive Science, 36(4), 635–654. doi: 10.1111/j.1551‑6709.2011.01229.x
    https://doi.org/10.1111/j.1551-6709.2011.01229.x [Google Scholar]
  69. Kintsch, W. , & Mangalath, P.
    (2011) The construction of meaning. Topics in Cognitive Science, 3(2), 346–370. doi: 10.1111/j.1756‑8765.2010.01107.x
    https://doi.org/10.1111/j.1756-8765.2010.01107.x [Google Scholar]
  70. Kiss, G. R. , Armstrong, C. , Milroy, R. and Piper, J.
    (1973) An associative thesaurus of English and its computer analysis. In Aitken, A. J. , Bailey, R. W. and Hamiltonsmith, N. (Eds), The Computer and Literary Studies. Edinburgh: University Press.
    [Google Scholar]
  71. Kivy, P.
    (1991) Music alone: Philosophical reflections on the purely musical experience. Cornell University Press.
    [Google Scholar]
  72. Koelsch, S. , Jacobs, A. M. , Menninghaus, W. , Liebal, K. , Klann-Delius, G. , von Scheve, C. , & Gebauer, G.
    (2015) The quartet theory of human emotions: An integrative and neurofunctional model. Physics of Life Reviews, 13, 1–27. doi: 10.1016/j.plrev.2015.03.001
    https://doi.org/10.1016/j.plrev.2015.03.001 [Google Scholar]
  73. Krumhansl, C. L.
    (1997) An Exploratory Study of Musical Emotions and Psychophysiology. Canadian Journal of Experimental Psychology, 51(4), 336. doi: 10.1037/1196‑1961.51.4.336
    https://doi.org/10.1037/1196-1961.51.4.336 [Google Scholar]
  74. Kuchinke, L. , Fritzemeier, S. , Hofmann, M. J. , & Jacobs, A. M.
    (2013) Neural correlates of episodic memory: Associative memory and confidence drive hippocampus activations. Behavioural Brain Research, 254, 92–101. doi: 10.1016/j.bbr.2013.04.035
    https://doi.org/10.1016/j.bbr.2013.04.035 [Google Scholar]
  75. Kuhlmann, M. , Hofmann, M. J. , Briesemeister, B. B. , & Jacobs, A. M.
    (2016) Mixing positive and negative valence: Affective-semantic integration of bivalent words. Scientific Reports, 6:30718. doi: 10.1038/srep30718
    https://doi.org/10.1038/srep30718 [Google Scholar]
  76. Kuzmičová, A.
    (2014) Literary narrative and mental imagery: A view from embodied cognition. Style, 48(3), 275–293.
    [Google Scholar]
  77. Landauer, T. K. , & Dumais, S. T.
    (1997) A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211. doi: 10.1037/0033‑295X.104.2.211
    https://doi.org/10.1037/0033-295X.104.2.211 [Google Scholar]
  78. Lasswell, H. D. , & Namenwirth, J. Z.
    (1969) The Lasswell value dictionary. New Haven: Yale University Press.
    [Google Scholar]
  79. Leder, H. , Belke, B. , Oeberst, A. , & Augustin, D.
    (2004) A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95(4), 489–508. doi: 10.1348/0007126042369811
    https://doi.org/10.1348/0007126042369811 [Google Scholar]
  80. Leder, H. , & Nadal, M.
    (2014) Ten years of a model of aesthetic appreciation and aesthetic judgments: The aesthetic episode – developments and challenges in empirical aesthetics. British Journal of Psychology, 105(4), 443–464. doi: 10.1111/bjop.12084
    https://doi.org/10.1111/bjop.12084 [Google Scholar]
  81. Leder, H. , Markey, P. S. , & Pelowski, M.
    (2015) Aesthetic emotions to art-What they are and what makes them special: Comment on “The quartet theory of human emotions: An integrative and neurofunctional model” by S. Koelsch et al.Physics of Life Reviews, 13, 67–70. doi: 10.1016/j.plrev.2015.04.037
    https://doi.org/10.1016/j.plrev.2015.04.037 [Google Scholar]
  82. Lehne, M. , Engel, P. , Rohrmeier, M. , Menninghaus, W. , Jacobs, A. M. , & Koelsch, S.
    (2015) Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference. PLoS One, 10(5), e0124550. doi: 10.1371/journal.pone.0124550
    https://doi.org/10.1371/journal.pone.0124550 [Google Scholar]
  83. Levinson, J.
    (1997) Music and negative emotion. In J. Robinson (Ed.), Music and Meaning (pp.215–41). Ithaca, NY: Cornell University Press.
    [Google Scholar]
  84. Lindquist, K. A. , MacCormack, J. K. , & Shablack, H.
    (2015) The role of language in emotion: Predictions from psychological constructionism. Frontiers in Psychology, 6:444. doi: 10.3389/fpsyg.2015.00444
    https://doi.org/10.3389/fpsyg.2015.00444 [Google Scholar]
  85. Liu, S. , Erkkinen, M. G. , Healey, M. L. , Xu, Y. , Swett, K. E. , Chow, H. M. , & Braun, A. R.
    (2015) Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36(9), 3351–3372. doi: 10.1002/hbm.22849
    https://doi.org/10.1002/hbm.22849 [Google Scholar]
  86. Loh, W. Y.
    (2011) Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14–23. doi: 10.1002/widm.8
    https://doi.org/10.1002/widm.8 [Google Scholar]
  87. Lüdtke, J. , & Jacobs, A. M.
    (2015) The emotion potential of simple sentences: Additive or interactive effects of nouns and adjectives?. Frontiers in Psychology, 6:1137. doi: 10.3389/fpsyg.2015.01137
    https://doi.org/10.3389/fpsyg.2015.01137 [Google Scholar]
  88. Lüdtke, J. , Meyer-Sickendieck, B. , & Jacobs, A. M.
    (2014) Immersing in the stillness of an early morning: Testing the mood empathy hypothesis of poetry reception. Psychology of Aesthetics, Creativity, and the Arts, 8(3), 363. doi: 10.1037/a0036826
    https://doi.org/10.1037/a0036826 [Google Scholar]
  89. Marin, M. M.
    (2015) Crossing boundaries: Toward a general model of neuroaesthetics. Frontiers in Human Neuroscience, 9:443. doi: 10.3389/fnhum.2015.00443
    https://doi.org/10.3389/fnhum.2015.00443 [Google Scholar]
  90. Marin, M. M. , Lampatz, A. , Wandl, M. , & Leder, H.
    (2016) Berlyne revisited: Evidence for the multifaceted nature of hedonic tone in the appreciation of paintings and music. Frontiers in Human Neuroscience, 10:536. doi: 10.3389/fnhum.2016.00536
    https://doi.org/10.3389/fnhum.2016.00536 [Google Scholar]
  91. Martindale, C.
    (1975) The romantic progression: The psychology of literary history. Halsted Press.
    [Google Scholar]
  92. McNamara, D. S. , Louwerse, M. M. , McCarthy, P. M. , & Graesser, A. C.
    (2010) Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes, 47(4), 292–330. doi: 10.1080/01638530902959943
    https://doi.org/10.1080/01638530902959943 [Google Scholar]
  93. McNamara, D. S. , Graesser, A. C. , McCarthy, P. M. , & Cai, Z.
    (2014) Automated evaluation of text and discourse with Coh-Metrix. Cambridge University Press. doi: 10.1017/CBO9780511894664
    https://doi.org/10.1017/CBO9780511894664 [Google Scholar]
  94. McQuarrie, E. F. , & Mick, D. G.
    (1996) Figures of rhetoric in advertising language. Journal of Consumer Research, 22(4), 424–438. doi: 10.1086/209459
    https://doi.org/10.1086/209459 [Google Scholar]
  95. Mcquire, M. , Mccollum, L. , & Chatterjee, A.
    (2017) Aptness and beauty in metaphor. Language and Cognition, 9(2), 316–331. doi: 10.1017/langcog.2016.13
    https://doi.org/10.1017/langcog.2016.13 [Google Scholar]
  96. Meireles, R. C.
    (2005) The hermeneutics of symbolical imagery in Shakespeare’s sonnets. Unpublished Dissertation, University. Porto Alegre, Bresil.
  97. Menninghaus, W. , Bohrn, I. C. , Altmann, U. , Lubrich, O. , & Jacobs, A. M.
    (2014) Sounds funny? Humor effects of phonological and prosodic figures of speech. Psychology of Aesthetics, Creativity, and the Arts, 8(1), 71–76. doi: 10.1037/a0035309
    https://doi.org/10.1037/a0035309 [Google Scholar]
  98. Menninghaus, W. , Bohrn, I. C. , Knoop, C. A. , Kotz, S. A. , Schlotz, W. , & Jacobs, A. M.
    (2015) Rhetorical features facilitate prosodic processing while handicapping ease of semantic comprehension. Cognition, 143, 48–60. doi: 10.1016/j.cognition.2015.05.026
    https://doi.org/10.1016/j.cognition.2015.05.026 [Google Scholar]
  99. Meyer-Sickendiek, B.
    (2011) Lyrisches Gespür: Vom Geheimen Sensorium Moderner Poesie [The lyrical sense of feeling. About the secret sensorium of modern poetry]. Paderborn, Germany: Fink.
    [Google Scholar]
  100. Miall, D. S.
    (1989) Beyond the schema given: Affective comprehension of literary narratives. Cognition & Emotion, 3(1), 55–78. doi: 10.1080/02699938908415236
    https://doi.org/10.1080/02699938908415236 [Google Scholar]
  101. Miall, D. S. , & Kuiken, D.
    (1994) Foregrounding, defamiliarization, and affect: Response to literary stories. Poetics, 22(5), 389–407. doi: 10.1016/0304‑422x(94)00011‑5
    https://doi.org/10.1016/0304-422x(94)00011-5 [Google Scholar]
  102. Miall, D. S. , & Dissanayake, E.
    (2003) The poetics of babytalk. Human Nature, 14(4), 337–364. doi: 10.1007/s12110‑003‑1010‑4
    https://doi.org/10.1007/s12110-003-1010-4 [Google Scholar]
  103. Miller, G. A.
    (1993) “Images and models, similes and metaphors”. In A. Ortony (ed), Metaphor and thought, 2nd edition (pp.357–400). Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139173865.019
    https://doi.org/10.1017/CBO9781139173865.019 [Google Scholar]
  104. (1993) Wörter: Streifzüge durch die Psycholinguistik. Frankfurt: Zweitausendeins.
    [Google Scholar]
  105. Millis, K. , & Larson, M.
    (2008) Applying the construction-integration framework to aesthetic responses to representational artworks. Discourse Processes, 45(3), 263–287. doi: 10.1080/01638530802070015
    https://doi.org/10.1080/01638530802070015 [Google Scholar]
  106. Nicklas, P. , & Jacobs, A. M.
    (2017) Rhetorics, neurocognitive poetics and the aesthetics of adaptation. Poetics Today, 38, 393–412. doi: 10.1215/03335372‑3869311.
    https://doi.org/10.1215/03335372-3869311 [Google Scholar]
  107. Oatley, K.
    (1994) A taxonomy of the emotions of literary response and a theory of identification in fictional narrative. Poetics, 23(1–2), 53–74. doi: 10.1016/0304‑422x(94)p4296‑s
    https://doi.org/10.1016/0304-422x(94)p4296-s [Google Scholar]
  108. (2016) Fiction: Simulation of social worlds. Trends in Cognitive Sciences, 20(8), 618–628. doi: 10.1016/j.tics.2016.06.002
    https://doi.org/10.1016/j.tics.2016.06.002 [Google Scholar]
  109. O’Sullivan, N. , Davis, P. , Billington, J. , Gonzalez-Diaz, V. , & Corcoran, R.
    (2015) “Shall I compare thee”: The neural basis of literary awareness, and its benefits to cognition. Cortex, 73, 144–157. doi: 10.1016/j.cortex.2015.08.014
    https://doi.org/10.1016/j.cortex.2015.08.014 [Google Scholar]
  110. Panksepp, J.
    (2008) The power of the word may reside in the power of affect. Integrative Psychological and Behavioral Science, 42(1), 47–55. doi: 10.1007/s12124‑007‑9036‑5
    https://doi.org/10.1007/s12124-007-9036-5 [Google Scholar]
  111. Pelowski, M. , Markey, P. S. , Lauring, J. O. , & Leder, H.
    (2016) Visualizing the impact of art: An update and comparison of current psychological models of art experience. Frontiers in Human Neuroscience, 10:160. doi: 10.3389/fnhum.2016.00160
    https://doi.org/10.3389/fnhum.2016.00160 [Google Scholar]
  112. Pléh, C.
    (2003) Narrativity in text construction and self construction. Neohelicon, 30(1), 187–205. doi: 10.1023/A:1024178827479
    https://doi.org/10.1023/A:1024178827479 [Google Scholar]
  113. Pragglejaz Group
    Pragglejaz Group (2007) MIP: A method for identifying metaphorically used words in discourse. Metaphor and Symbol, 22(1), 1–39. doi: 10.1080/10926480709336752
    https://doi.org/10.1080/10926480709336752 [Google Scholar]
  114. Richards, I. A.
    (1929) Practical criticism: A study of literary judgment. New York: Harcourt Brace Jovanovich.
    [Google Scholar]
  115. Rosenblatt, L. M.
    (1978) The reader, the text, the poem: The transactionaltheoryof the literarywork. Carbondale, IL: Southern Illinois University Press.
    [Google Scholar]
  116. Ryan, M. L.
    (2001) Narrative as virtual reality: Immersion and interactivity in literature and electronic media. Johns Hopkins University Press.
    [Google Scholar]
  117. Schmidtke, D. S. , Schröder, T. , Jacobs, A. M. , & Conrad, M.
    (2014) ANGST: Affective norms for German sentiment terms, derived from the affective norms for English words. Behavior Research Methods, 46(4), 1108–1118. doi: 10.3758/s13428‑013‑0426‑y
    https://doi.org/10.3758/s13428-013-0426-y [Google Scholar]
  118. Schrott, R. , & Jacobs, A. M.
    (2011) Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren (Brain and Poetry: How We Construct Our Realities). München: Hanser.
    [Google Scholar]
  119. Shakespeare online
    Shakespeare online. n.d.Retrieved fromwww.shakespeare-online.com/sonnets/sonnetintroduction.html)
  120. Shimron, J.
    (1980) Psychological processes behind the comprehension of a poetic text. Instructional Science, 9(1), 43–66. doi: 10.1007/BF00118968
    https://doi.org/10.1007/BF00118968 [Google Scholar]
  121. Simonto, D. K.
    (1989) Shakespeare’s Sonnets: A Case of and for Single – Case Historiometry. Journal of Personality, 57(3), 695–721. doi: 10.1111/j.1467‑6494.1989.tb00568.x
    https://doi.org/10.1111/j.1467-6494.1989.tb00568.x [Google Scholar]
  122. Simonton, D. K.
    (1990) Lexical choices and aesthetic success: A computer content analysis of 154 Shakespeare sonnets. Computers and the Humanities, 24(4), 251–264. doi: 10.1007/BF00123412
    https://doi.org/10.1007/BF00123412 [Google Scholar]
  123. Smith, N. J. , & Levy, R.
    (2013) The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302–319. doi: 10.1016/j.cognition.2013.02.013
    https://doi.org/10.1016/j.cognition.2013.02.013 [Google Scholar]
  124. Steen, G.
    (1999) Analyzing metaphor in literature: With examples from William Wordsworth’s “I wandered lonely as a cloud”. Poetics Today, 20(3), 499–522.
    [Google Scholar]
  125. (2002) Metaphor in Bob Dylan’s ’Hurricane’: Genre, Language, and Style. In E. Semino , & J. Culpepper (eds): Cognitive Stylistics: Language and Cognition in Text Analysis (pp.183–210). Amsterdam: John Benjamins. doi: 10.1075/lal.1.10ste
    https://doi.org/10.1075/lal.1.10ste [Google Scholar]
  126. (2004) Can discourse properties of metaphor affect metaphor recognition?. Journal of Pragmatics, 36(7), 1295–1313. doi: 10.1016/j.pragma.2003.10.014
    https://doi.org/10.1016/j.pragma.2003.10.014 [Google Scholar]
  127. Stockwell, P.
    (2009) The cognitive poetics of literary resonance. Language and Cognition, 1(1), 25–44. doi: 10.1515/LANGCOG.2009.002
    https://doi.org/10.1515/LANGCOG.2009.002 [Google Scholar]
  128. Stone, P. J. , Bales, R. F. , Namenwirth, J. Z. , & Ogilvie, D. M.
    (1962) The general inquirer: A computer system for content analysis and retrieval based on the sentence as a unit of information. Behavioral Science, 7(4), 484–498. doi: 10.1002/bs.3830070412
    https://doi.org/10.1002/bs.3830070412 [Google Scholar]
  129. Sylvester, T. , Braun, M. , Schmidtke, D. , & Jacobs, A. M.
    (2016) The Berlin affective word list for children (kidBAWL): Exploring processing of affective lexical semantics in the visual and auditory modalities. Frontiers in Psychology, 7:969. doi: 10.3389/fpsyg.2016.00969
    https://doi.org/10.3389/fpsyg.2016.00969 [Google Scholar]
  130. Taruffi, L.
    (2016) Why We Listen to Sad Music: Effects on Emotion and Cognition. (Unpublished doctoral dissertation), Freie Universität Berlin.
  131. The Complete Works of William Shakespeare
    The Complete Works of William Shakespeare. n.d.Retrieved from: shakespeare.mit.edu/.
  132. Tsur, R.
    (1998) Poetic Rhythm: Structure and Performance – An Empirical Study in Cognitive Poetics. Bern: Peter Lang.
    [Google Scholar]
  133. (2006) Delivery style and listener response in the rhythmical performance of Shakespeare’s sonnets. College Literature, 33(1), 170–196. doi: 10.1353/lit.2006.0014
    https://doi.org/10.1353/lit.2006.0014 [Google Scholar]
  134. (2008) Deixis in literature: What isn’t cognitive poetics?. Pragmatics & Cognition, 16(1), 119–150. doi: 10.1075/p&c.16.1.08tsu
    https://doi.org/10.1075/p&c.16.1.08tsu [Google Scholar]
  135. Turner, F. , & Pöppel, E.
    (1983) The neural lyre: Poetic meter, the brain, and time. Poetry, 277–309.
    [Google Scholar]
  136. Ullrich, S. , Aryani, A. , Kraxenberger, M. , Jacobs, A. M. , & Conrad, M.
    (2016) Textual features as basis of the general affective meaning: Exploring the interplay of lexical affective features, dynamic inter-lexical shifts, and the basic affective tone in poetry. In revision.
    [Google Scholar]
  137. Van Peer, W.
    (1986) Stylistics and psychology: Investigations of foregrounding. London, UK: Croom Helm.
    [Google Scholar]
  138. van den Hoven, E. , Hartung, F. , Burke, M. , & Willems, R.
    (2016) Individual differences in sensitivity to style during literary reading: Insights from eye-tracking. Collabra: Psychology, 2(1), 1–16. doi: 10.1525/collabra.39
    https://doi.org/10.1525/collabra.39 [Google Scholar]
  139. Vaughan-Evans, A. , Trefor, R. , Jones, L. , Lynch, P. , Jones, M. W. , & Thierry, G.
    (2016) Implicit detection of poetic harmony by the naïve brain. Frontiers in Psychology, 7:1859. doi: 10.3389/fpsyg.2016.01859
    https://doi.org/10.3389/fpsyg.2016.01859 [Google Scholar]
  140. Vendler, H.
    (1997) The art of Shakespeare’s sonnets. Cambridge, MA: Harvard University Press.
    [Google Scholar]
  141. Võ, M. L. , Conrad, M. , Kuchinke, L. , Urton, K. , Hofmann, M. J. , & Jacobs, A. M.
    (2009) The Berlin affective word list reloaded (BAWL-R). Behavior Research Methods, 41(2), 534–538. doi: 10.3758/B.R.M.41.2.534
    https://doi.org/10.3758/B.R.M.41.2.534 [Google Scholar]
  142. Võ, M. L. , Jacobs, A. M. , & Conrad, M.
    (2006) Cross-validating the Berlin affective word list. Behavior Research Methods, 38(4), 606–609. doi: 10.3758/BF03193892
    https://doi.org/10.3758/BF03193892 [Google Scholar]
  143. Wainwright, J.
    (2015) Poetry: The basics. Routledge.
    [Google Scholar]
  144. Wallace, W. T. , & Rubin, D. C.
    (1991) Characteristics and constraints in ballads and their effect on memory. Discourse Processes, 14, 181–202. doi: 10.1080/01638539109544781
    https://doi.org/10.1080/01638539109544781 [Google Scholar]
  145. Wallentin, M. , Nielsen, A. H. , Vuust, P. , Dohn, A. , Roepstorff, A. , & Lund, T. E.
    (2011) Amygdala and heart rate variability responses from listening to emotionally intense parts of a story. Neuroimage, 58(3), 963–973. doi: 10.1016/j.neuroimage.2011.06.077
    https://doi.org/10.1016/j.neuroimage.2011.06.077 [Google Scholar]
  146. Warriner, A. B. , Kuperman, V. , & Brysbaert, M.
    (2013) Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207. doi: 10.3758/s13428‑012‑0314‑x
    https://doi.org/10.3758/s13428-012-0314-x [Google Scholar]
  147. Westbury, C. , Keith, J. , Briesemeister, B. B. , Hofmann, M. J. , & Jacobs, A. M.
    (2014) Avoid violence, rioting, and outrage; approach celebration, delight, and strength: Using large text corpora to compute valence, arousal, and the basic emotions. The Quarterly Journal of Experimental Psychology, 68(8), 1599–1622. doi: 10.1080/17470218.2014.970204
    https://doi.org/10.1080/17470218.2014.970204 [Google Scholar]
  148. Willems, R. M.
    (Ed.) (2015) Cognitive Neuroscience of Natural Language Use. Cambridge: Cambridge University Press. doi: 10.1017/CBO9781107323667
    https://doi.org/10.1017/CBO9781107323667 [Google Scholar]
  149. Willems, R. M. , Frank, S. L. , Nijhof, A. D. , Hagoort, P. , & Van den Bosch, A.
    (2015) Prediction during natural language comprehension. Cerebral Cortex, 26(6), 2506–2516. doi: 10.1093/cercor/bhv075
    https://doi.org/10.1093/cercor/bhv075 [Google Scholar]
  150. Willems, R. M. , & Jacobs, A. M.
    (2016) Caring about Dostoyevsky: The untapped potential of studying literature. Trends in Cognitive Sciences, 20(4), 243–245. doi: 10.1016/j.tics.2015.12.009
    https://doi.org/10.1016/j.tics.2015.12.009 [Google Scholar]
  151. Yaron, I.
    (2002) Processing of obscure poetic texts: Mechanisms of selection. Journal of Literary Semantics, 31(2), 133–170. doi: 10.1515/jlse.2002.013
    https://doi.org/10.1515/jlse.2002.013 [Google Scholar]
  152. (2008) What is a “difficult poem”? Towards a definition. Journal of Literary Semantics, 37(2), 129–150. doi: 10.1515/jlse.2008.008
    https://doi.org/10.1515/jlse.2008.008 [Google Scholar]
  153. Zeman, A. , Milton, F. , Smith, A. , & Rylance, R.
    (2013) By heart an fMRI study of brain activation by poetry and prose. Journal of Consciousness Studies, 20(9–10), 132–158.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/ssol.7.1.02jac
Loading
/content/journals/10.1075/ssol.7.1.02jac
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error