Volume 3, Issue 1
  • ISSN 2542-5277
  • E-ISSN: 2542-5285
Buy:$35.00 + Taxes



This article examines the use of raw, unedited machine-translated texts by patent professionals using the framework of distributed cognition. The goals of the study were to evaluate whether the concept of distributed cognition is a useful theoretical lens for examining and explaining raw MT reception, and to contribute to our knowledge of raw MT use through an analysis of a real-life use case. The study revealed that patent professionals often rely on a large network of artifacts and people to help them in the task of understanding raw MT, and therefore the concept of distributed cognition was applicable and useful. The study also contributed new knowledge to our overall understanding of the use of raw MT.


Article metrics loading...

Loading full text...

Full text loading...


  1. Alberts, Doreen, Cynthia Barcelon Yang, Ken Koubek, Suzanne Robins, Matthew Rodgers, Edlyn Simmons, and Dominic DeMarco
    2017 “Introduction to Patent Searching.” InCurrent Challenges in Patent Information Retrieval. 2nd ed.Edited byM. Lupu, K. Mayer, N. Kando and A. J. Trippe, 3–45. Berlin: Springer. 10.1007/978‑3‑662‑53817‑3_1
    https://doi.org/10.1007/978-3-662-53817-3_1 [Google Scholar]
  2. Battistelli, Benoît
    2012 “Patent Translate Service Goes Live!” https://blog.epo.org/the-epo/patent-translate-service-goes-live/Accessed5 July 2019.
  3. Bowker, Lynne, and Jairo Buitrago Ciro
    2019Machine Translation and Global Research: Towards improved machine translation literacy in the scholarly community. Bingley, UK: Emerald. 10.1108/9781787567214
    https://doi.org/10.1108/9781787567214 [Google Scholar]
  4. Bowker, Lynne, and Melissa Ehgoetz
    2007 “Exploring User Acceptance of Machine Translation Output: A recipient evaluation.” InAcross Boundaries: International perspectives on Translation Studies. Edited byD. Kenny and K. Ryou, 209–224. Newcastle: Cambridge Scholars.
    [Google Scholar]
  5. Braun, Virginia, and Victoria Clarke
    2006 “Using Thematic Analysis in Psychology.” Qualitative Research in Psychology3 (2): 77–101. 10.1191/1478088706qp063oa
    https://doi.org/10.1191/1478088706qp063oa [Google Scholar]
  6. 2013Successful Qualitative Research: A practical guide for beginners. Los Angeles: SAGE.
    [Google Scholar]
  7. Burgett, Will
    2015 “Unmoderated Remote Usability Testing of Machine Translation Content.” TAUS Review of Language Business and TechnologyIV: 30–37.
    [Google Scholar]
  8. Castilho, Sheila, Fabio Alves, Sharon O’Brien, and Morgan O’Brien
    2014 “Does Post-Editing Increase Usability? A study with Brazilian Portuguese as target language.” InProceedings of the 17th Annual Conference of the European Association for Machine Translation,183–190. www.mt-archive.info/10/EAMT-2014-Castilho.pdf
    [Google Scholar]
  9. Castilho, Sheila, and Sharon O’Brien
    2017 “Acceptability of Machine-Translated Content: A multi-language evaluation by translators and end-users.” Linguistica Antverpiensia16: 120–136.
    [Google Scholar]
  10. Cavalier, Tim
    2001 “Perspectives on Machine Translation of Patent Information.” World Patent Information23 (4). 10.1016/S0172‑2190(01)00045‑X
    https://doi.org/10.1016/S0172-2190(01)00045-X [Google Scholar]
  11. Clark, Andy, and David Chalmers
    1998 “The Extended Mind.” Analysis4 (1): 7–19. 10.1093/analys/58.1.7
    https://doi.org/10.1093/analys/58.1.7 [Google Scholar]
  12. Doherty, Stephen, and Sharon O’Brien
    2009 “Can MT Output be Evaluated through Eye Tracking?” InProceedings of the 12th Machine Translation Summit,1–8. www.mt-archive.info/MTS-2009-Doherty.pdf
    [Google Scholar]
  13. 2014 “Assessing the Usability of Raw Machine Translated Output: A user-centered study using eye tracking.” International Journal of Human-Computer Interaction30: 40–51. 10.1080/10447318.2013.802199
    https://doi.org/10.1080/10447318.2013.802199 [Google Scholar]
  14. Ehrensberger-Dow, Maureen
    2019 “Ergonomics and the Translation Process.” Slovo.Ru: Baltijskij Accent10 (1): 37–51. 10.5922/2225‑5346‑2019‑1‑3
    https://doi.org/10.5922/2225-5346-2019-1-3 [Google Scholar]
  15. EPO: European Patent Office
    EPO: European Patent Office 2018How to Get a European Patent: Guide for applicants. Vienna: European Patent Office Vienna.
    [Google Scholar]
  16. Fuji, Masaru, N. Hatanaka, E. Ito, S. Kamei, H. Kumai, T. Sukehiro, T. Yoshimi, and Hitoshi Isahara
    2001 “Evaluation Method for Determining Groups of Users Who Find MT “Useful”. InProceedings of the 8th Machine Translation Summit, 11–21. www.eamt.org/events/summitVIII/papers.html
    [Google Scholar]
  17. Gao, Ge, Hao-Chuan Wang, Dan Cosley, and Susan R. Fussell
    2013 “Same Translation but Different Experience: The effects of highlighting on machine-translated conversations.” InCHI ‘13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,449–458. 10.1145/2470654.2470719
    https://doi.org/10.1145/2470654.2470719 [Google Scholar]
  18. Gao, Ge, Bin Xu, David Hau, Zheng Yao, Dan Cosley, and Susan R. Fussell
    2015 “Two is Better than One: Improving multilingual collaboration by giving two machine translation outputs.” InCSCW ‘15: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, 852–863. 10.1145/2675133.2675197
    https://doi.org/10.1145/2675133.2675197 [Google Scholar]
  19. Gaspari, Federico
    2004 “Online MT Services and Real Users’ Needs: An empirical usability evaluation.” InMachine Translation: From real users to research—6th Conference of the Association for Machine Translation in the Americas, AMTA 2014, 74–85. https://link.springer.com/book/10.1007/b100780
    [Google Scholar]
  20. 2006 “The Added Value of Free Online MT Services: Confidence boosters for linguistically-challenged Internet users, a case study for the language pair Italian-English.” InProceedings of the 7th Conference of the Association for Machine Translation of the Americas, 46–55. www.mt-archive.info/05/AMTA-2006-TOC.htm
    [Google Scholar]
  21. 2007The Role of Online MT in Webpage Translation. PhD dissertation, University of Manchester.
    [Google Scholar]
  22. Henisz-Dostert, Bozena
    1979 “Users’ Evaluation of Machine Translation.” InMachine Translation. Edited byW. Winter, 149–244. The Hague: Mouton.
    [Google Scholar]
  23. Ishida, Toru
    2016 “Intercultural Collaboration and Support Systems: A brief history.” InPRIMA 2016: Principles and Practice of Multi-Agent Systems—19th Annual Conference, 3–19. . 10.1007/978‑3‑319‑44832‑9_1
    https://doi.org/10.1007/978-3-319-44832-9_1 [Google Scholar]
  24. Joho, Hideo, Leif Azzopardi, and Wim Vandervauwheded
    2010 “A Survey of Patent Users: An analysis of tasks, behavior, search functionality and system requirements.” InProceedings of the Third Symposium on Information Interaction in Context: IIiX ’10, 13–24. 10.1145/1840784.1840789
    https://doi.org/10.1145/1840784.1840789 [Google Scholar]
  25. Jolley, Jason R., and Luciane Maimone
    2015 “Free Online Machine Translation: Use and perceptions by Spanish students and instructors.” InLearn Languages, Explore Cultures, Transform Lives. Edited byA. J. Moeller, 181–200. Minneapolis, MN: Central States Conference on the Teaching of Foreign Languages.
    [Google Scholar]
  26. List, Jane
    2012 “Review of Machine Translation in Patents—Implications for search.” World Patent Information34 (3): 193–195. 10.1016/j.wpi.2012.05.005
    https://doi.org/10.1016/j.wpi.2012.05.005 [Google Scholar]
  27. Liu, Nancy Xiuzhi, and Matthew Watts
    2019 “Mobile Translation Experience: Current state and future directions.” InImpacts of Mobile use and Experience on Contemporary Society. Edited byX. Xu, 193–212. Hershey, PA: IGI Global. 10.4018/978‑1‑5225‑7885‑7.ch012
    https://doi.org/10.4018/978-1-5225-7885-7.ch012 [Google Scholar]
  28. Marzouk, Shaimaa, and Silvia Hansen-Schirra
    2019 “Evaluation of the Impact of Controlled Language on Neural Machine Translation Compared to Other MT Architectures.” Machine Translation33 (1–2): 179–203. doi:  10.1007/s10590‑019‑09233‑w
    https://doi.org/10.1007/s10590-019-09233-w [Google Scholar]
  29. Moorkens, Joss
    2017 “Under Pressure: Translation in times of austerity.” Perspectives: Studies in Translation Theory and Practice25 (3): 464–477. 10.1080/0907676X.2017.1285331
    https://doi.org/10.1080/0907676X.2017.1285331 [Google Scholar]
  30. Morland, D. Verne
    2002Nutzlos, Bien Pratique, Or Muy Util? Business users speak out on the value of pure machine translation. Dayton, OH: NCR Corporation.
    [Google Scholar]
  31. Muñoz Martín, Ricardo
    2010 “On paradigms and cognitive translatology. InTranslation and Cognition. Edited byG. Shreve & E. Angelone, 169–187. Amsterdam: John Benjamins. 10.1075/tis.5.2.01mun
    https://doi.org/10.1075/tis.5.2.01mun [Google Scholar]
  32. 2017 “Looking Toward the Future of Cognitive Translation Studies.” InThe Handbook of Translation and Cognition. Edited byJ. W. Schwieter and A. Ferreira, 555–572. London: Wiley-Blackwell. 10.1002/9781119241485.ch30
    https://doi.org/10.1002/9781119241485.ch30 [Google Scholar]
  33. Nitzke, Jean, Silvia Hansen–Schirra, and Carmen Canfora
    2019 “Risk Management and Post-Editing Competence.” The Journal of Specialised Translation (31): 239–259.
    [Google Scholar]
  34. Nurminen, Mary
    2016 “Machine Translation-Mediated Interviewing in Qualitative Research: A pilot project.” New Horizons in Translation Research and Education4: 66–84.
    [Google Scholar]
  35. Nurminen, Mary, and Niko Papula
    2018 “Gist MT Users: A snapshot of the use and users of one online MT tool.” Proceedings of the 21st Annual Conference of the European Association for Machine Translation, 199–208. rua.ua.es/dspace/handle/10045/76049
    [Google Scholar]
  36. Nurminen, Mary
    2019 “Decision-making, Risk, and Gist Machine Translation in the Work of Patent Professionals.” Proceedings of the 8th Workshop on Patent and Scientific Literature Translation, 32–42. https://www.aclweb.org/anthology/W19-7204/
    [Google Scholar]
  37. Nuutila, Pertti
    2005Rough Machine Translation in the Communication Process. Licentiate thesis, University of Tampere.
    [Google Scholar]
  38. O’Brien, Sharon
    2010 “Controlled Language and Readability.” InTranslation and Cognition. Edited byG. M. Shreve and E. Angelone, 143–165. Amsterdam: John Benjamins. 10.1075/ata.xv.08obr
    https://doi.org/10.1075/ata.xv.08obr [Google Scholar]
  39. 2017 “Machine Translation and Cognition.” InThe Handbook of Translation and Cognition. Edited byJ. W. Schwieter and A. Ferreira, 313–331. London: Wiley-Blackwell. 10.1002/9781119241485.ch17
    https://doi.org/10.1002/9781119241485.ch17 [Google Scholar]
  40. Oesch, Rainer, Heli Pihlajamaa, and Sami Sunila
    2014Patenttioikeus [Patent Law]. 3rd edition. Helsinki: Talentum.
    [Google Scholar]
  41. Ogura, Kentaro, Yoshihiko Hayashi, Saeko Nomura, and Toru Ishida
    2004 “User Adaptation in MT-Mediated Communication.” The First International Joint Conference on Natural Language Processing (IJCNLP-04), 596–601.
    [Google Scholar]
  42. Pituxcoosuuvarn, Mondheera, Toru Ishida, Naomi Yamashita, Toshiyuki Takasaki, and Yumiko Mori
    2018 “Machine Translation Usage in a Children’s Workshop.” CollabTech 2018: Collaboration Technologies and Social Computing: 10th International Conference, Proceedings, 59–73. Edited byT. Yoshino , 59–73. Saskatoon, SK, Canada: Springer.
    [Google Scholar]
  43. Pouliquen, Bruno
    2016Practical use of Machine Translation in International Organizations. Varanasi, India: World Intellectual Property Organization (WIPO).
    [Google Scholar]
  44. PRH: Patentti- ja rekisterihallitus [Finnish Patent and Registration Office] 2018Patenttiopas [Patent Guide]. Helsinki: Patentti- ja rekisterihallitus (PRH).
    [Google Scholar]
  45. Pym, Anthony, and Kayo Matsushita
    2018 “Risk Mitigation in Translator Decisions.” Across Languages and Cultures19 (1): 1–18. 10.1556/084.2018.19.1.1
    https://doi.org/10.1556/084.2018.19.1.1 [Google Scholar]
  46. Risku, Hanna
    2010 “A Cognitive Scientific View on Technical Communication and Translation: Do embodiment and situatedness really make a difference?” Target22 (1): 94–111. 10.1075/target.22.1.06ris
    https://doi.org/10.1075/target.22.1.06ris [Google Scholar]
  47. 2014 “Translation Process Research as Interaction Research: From mental to socio-cognitive processes.” InMinding Translation. Edited byR. Muñoz, 331–353. MonTI, special issue 1. Alicante: Universidad de Alicante.
    [Google Scholar]
  48. Rossi, Laura, and Dion Wiggins
    2013 “Applicability and Application of Machine Translation Quality Metrics in the Patent Field.” World Patent Information35 (2): 115–125. doi:10.1016/j.wpi.2012.12.001
    [Google Scholar]
  49. Schwieter, John W., and Aline Ferreira
    eds. 2017The Handbook of Translation and Cognition. Hoboken, NJ: John Wiley & Sons. 10.1002/9781119241485
    https://doi.org/10.1002/9781119241485 [Google Scholar]
  50. Shreve, Gregory M., and Erik Angelone
    eds. 2010Translation and Cognition. Amsterdam: John Benjamins. 10.1075/ata.xv
    https://doi.org/10.1075/ata.xv [Google Scholar]
  51. Smith, Ross
    2003 “Overview of PwC/Sytranet On-Line MT Facility.” InProceedings of the Twenty-fifth International Conference on Translating and the Computer. mt-archive.info/Aslib-2003-TOC.htm
    [Google Scholar]
  52. Stewart, Osamuyimen, David Lubensky, Scott Macdonald, and Julie Marcotte
    2010 “Using Machine Translation for the Localization of Electronic Support Content: Evaluating end-user satisfaction.” InProceedings of the 9th Conference of the Association for Machine Translation in the Americas. www.mt-archive.info/10/AMTA-2010-TOC.htm
    [Google Scholar]
  53. Tinsley, John, Alexandru Ceausu, Jian Zhang, Heidi Depraetere, and Joeri Van de Walle
    2012 “IPTranslator: Facilitating patent search with machine translation.” 28October–1November 2012.
    [Google Scholar]
  54. Turovsky, Barak
    2016Google Translate Blog: Ten years of Google Translate. https://Blog.Google/Products/Translate/Ten-Years-of-Google-Translate/. Accessed30 June 2016.
    [Google Scholar]
  55. Wang, Dan
    2009 “Chinese to English Automatic Patent Machine Translation at SIPO.” World Patent Information31 (2): 137–139. 10.1016/j.wpi.2008.10.003
    https://doi.org/10.1016/j.wpi.2008.10.003 [Google Scholar]
  56. Way, Andy
    2013 “Traditional and Emerging Use-Cases for Machine Translation.” Paper presented atTranslating and the Computer 34. https://www.computing.dcu.ie/~away/PUBS/2013/Way_ASLIB_2013.pdf
    [Google Scholar]
  57. 2018 “Quality Expectations of Machine Translation.” InTranslation Quality Assessment: From principles to practice. Edited byJ. Moorkens, S. Castilho, F. Gaspari and S. Doherty, 159–178. Cham, Switzerland: Springer. 10.1007/978‑3‑319‑91241‑7_8
    https://doi.org/10.1007/978-3-319-91241-7_8 [Google Scholar]
  58. WIPO: World Intellectual Property Organization
    WIPO: World Intellectual Property Organization 2018World Intellectual Property Indicators 2018. Geneva: World Intellectual Property Organization.
    [Google Scholar]
  59. Xu, Bin, Ge Gao, Susan R. Fussell, and Dan Cosley
    2014 “Improving Machine Translation by Showing Two Outputs.” InChi ’14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 3743–3746. https://dl.acm.org/citation.cfm?id=2556288
    [Google Scholar]
  60. Yamashita, Naomi, Rieko Inaba, Hideaki Kuzuoka, and Toru Ishida
    2009 “Difficulties in Establishing Common Ground in Multiparty Groups using Machine Translation.” InCHI ’09: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 679–688. https://dl.acm.org/citation.cfm?id=1518701
    [Google Scholar]
  61. Yang, Jin, and Elke Lange
    2003 “Going Live on the Internet.” InComputers and Translation: A translator’s guide. Edited byH. Somers, 191–210. Amsterdam: John Benjamins. 10.1075/btl.35.15yan
    https://doi.org/10.1075/btl.35.15yan [Google Scholar]
  62. Yasouka, Mika, and Pernille Bjorn
    2011 “Machine Translation Effects on Communication: What makes it difficult to communicate through machine translation?” InProceedings of the Second International Conference on Culture and Computing, 110–115.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error