Volume 4, Issue 1
  • ISSN 2542-5277
  • E-ISSN: 2542-5285
Buy:$35.00 + Taxes



Translation behaviour is increasingly tracked to benchmark productivity, to calculate pay or to automate project management decisions. Although in many cases these practices are commonplace, their effects are surprisingly under-researched. This article investigates the consequences of activity tracking in commercial translation. It reports on a series of focus-group interviews involving sixteen translators who used productivity tools to independently monitor their work for a period of sixteen weeks. Our analysis revealed several ways in which the act of tracking activity can itself influence translators’ working practices. We examine translators’ conceptualisations of productivity and discuss the findings as a matter of translator autonomy. The article calls for further awareness of individual and collective consequences of monitoring translation behaviour. Although in some contexts translators found activity tracking to be useful, we argue that client-controlled tracking and translator autonomy are in most cases incompatible.


Article metrics loading...

Loading full text...

Full text loading...


  1. Abdallah, Kristiina, and Kaisa Koskinen
    2007 “Managing Trust: Translating and the network economy.” Meta52 (4): 673–687. doi:  10.7202/017692ar
    https://doi.org/10.7202/017692ar [Google Scholar]
  2. Adams, William C.
    2015 “Conducting Semi-Structured Interviews.” InHandbook of Practical Program Evaluation. Edited byK. E. Newcomer, H. P. Hatry, and J. S. Wholey, 492–505. Hoboken, NJ: Wiley. doi:  10.1002/9781119171386.ch19
    https://doi.org/10.1002/9781119171386.ch19 [Google Scholar]
  3. Alonso, Elisa
    2016 “Conflict, Opacity and Mistrust in the Digital Management of Professional Translation Projects.” Translation & Interpreting8 (1): 19–29. doi:  10.12807/ti.108201.2016.a02
    https://doi.org/10.12807/ti.108201.2016.a02 [Google Scholar]
  4. Ashton, Kevin
    2009 “That ‘Internet of Things’ Thing: In the real world, things matter more than ideas.” RFID Journal. Accessed16 September 2020. https://www.rfidjournal.com/that-internet-of-things-thing
    [Google Scholar]
  5. Baclawski, Kenneth
    2018 “The Observer Effect.” InProceedings of the 2018 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), 11–14June 2018, Boston, MA. Edited byG. L. Rogova, C. Lebiere, O. E. Gundersen, A. Salfinger, and K. Baclawski, 83–89. Institute of Electrical and Electronics Engineers. doi:  10.1109/COGSIMA.2018.8423983
    https://doi.org/10.1109/COGSIMA.2018.8423983 [Google Scholar]
  6. Bartlett, Benjamin
    2020 “How do Hourly Rates Work? How can i increase mine?”. Unbabel Support. Accessed06 November 2020. https://help.unbabel.com/hc/en-us/articles/360003294194
    [Google Scholar]
  7. Bershidsky, Leonid
    2019 “A European Court Ruling that Requires Companies to Track Employees’ Exact Hours Could Yield Useful Productivity Data.” Bloomberg. Accessed22 December 2020. https://www.bloomberg.com/opinion/articles/2019-05-16/eu-time-tracking-ruling-could-generate-useful-productivity-data
    [Google Scholar]
  8. Bevir, Mark
    1999 “Foucault and Critique: Deploying agency against autonomy.” Political Theory27 (1): 65–84. www.jstor.org/stable/192161
    [Google Scholar]
  9. Buzelin, Hélène
    2011 “Agents of Translation.” InHandbook of Translation Studies, Volume2. Edited byY. Gambier and L. Van Doorslaer, 6–13. Amsterdam: John Benjamins. 10.1075/hts.2.age1
    https://doi.org/10.1075/hts.2.age1 [Google Scholar]
  10. Christman, John
    2020 “Autonomy in Moral and Political Philosophy.” InStanford Encyclopedia of Philosophy. Edited byE. N. Zalta. Accessed09 April 2021. https://plato.stanford.edu/archives/fall2020/entries/autonomy-moral/
    [Google Scholar]
  11. do Carmo, Félix
    2020 “‘Time is money’ and the value of translation.” Translation Spaces9 (1): 35–57. doi:  10.1075/ts.00020.car
    https://doi.org/10.1075/ts.00020.car [Google Scholar]
  12. EC, CIOL, and ITI
    EC, CIOL, and ITI 20172016 UK Translator Survey: Final report. European Commission Representation in the UK, the Chartered Institute of Linguists & Institue of Translation and Interpreting. Accessed09 April 2021. www.ciol.org.uk/sites/default/files/UKTS2016-Final-Report-Web.pdf
    [Google Scholar]
  13. Flikschuh, Katrin
    2012 “Personal Autonomy and Public Authority.” InKant on Moral Autonomy. Edited byO. Sensen, 169–190. Cambridge: Cambridge University Press. 10.1017/CBO9780511792489.012
    https://doi.org/10.1017/CBO9780511792489.012 [Google Scholar]
  14. Foucault, Michel
    1975Surveiller et punir: naissance de la prison [Discipline and Punish: The birth of the prison]. Paris: Gallimard.
    [Google Scholar]
  15. Franklin, Stan, and Art Graesser
    1997 “Is it an Agent, or Just a Program? A taxonomy for autonomous agents.” InIntelligent Agents III Agent Theories, Architectures, and Languages. Edited byJ. P. Müller, M. J. Wooldridge, and N. R. Jennings, 21–35. Berlin: Springer. 10.1007/BFb0013570
    https://doi.org/10.1007/BFb0013570 [Google Scholar]
  16. García, Ignacio
    2017 “Translating in the Cloud Age: Online marketplaces.” HERMES Journal of Language and Communication in Business56: 59–70. doi:  10.7146/hjlcb.v0i56.97202
    https://doi.org/10.7146/hjlcb.v0i56.97202 [Google Scholar]
  17. Hansen-Schirra, Silvia
    2017 “EEG and Universal Language Processing in Translation.” InThe Handbook of Translation and Cognition. Edited byJ. W. Schwieter and A. Ferreira, 232–247. Hoboken, NJ: Wiley. 10.1002/9781119241485.ch13
    https://doi.org/10.1002/9781119241485.ch13 [Google Scholar]
  18. Huang, Ronggui
    2016RQDA: R-Based Qualitative Data Analysis. R Package Version 0.2–8. rqda.r-forge.r-project.org/
    [Google Scholar]
  19. Kenny, Dorothy, and Stephen Doherty
    2014 “Statistical Machine Translation in the Translation Curriculum: Overcoming obstacles and empowering translators.” The Interpreter and Translator Trainer8 (2): 276–294. doi:  10.1080/1750399X.2014.936112
    https://doi.org/10.1080/1750399X.2014.936112 [Google Scholar]
  20. Kinnunen, Tuija, and Kaisa Koskinen
    eds. 2010Translators’ Agency. Tampere: Tampere University Press.
    [Google Scholar]
  21. Labov, William
    1972Sociolinguistic Patterns. Philadelphia: University of Pennsylvania Press.
    [Google Scholar]
  22. LeBlanc, Matthieu
    2017 “‘I Can’t Get No Satisfaction!’ — Should we blame translation technologies or shifting business practices?” InHuman Issues in Translation Technology. Edited byD. Kenny, 45–62. London: Routledge.
    [Google Scholar]
  23. Luck, Michael, and Mark d’Inverno
    1995 “A Formal Framework for Agency and Autonomy.” InProceedings of the First International Conference on Multi-Agent Systems, 254–260. Cambridge, MA: Association for the Advancement of Artificial Intelligence (AAAI). Accessed09 April 2021. https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-034.pdf
    [Google Scholar]
  24. Massardo, Isabella, Jaap van der Meer, Sharon O’Brien, Fred Hollowood, Nora Aranberri, and Katrin Drescher
    2016MT Post-Editing Guidelines. Amsterdam: TAUS Signature Editions.
    [Google Scholar]
  25. memoQ
    memoQ. n.d. “Create Editing Time Report.” memoQ. Accessed12 November 2020. https://docs.memoq.com/current/en/Places/create-editing-time-report.html
    [Google Scholar]
  26. Moorkens, Joss
    2017 “Under Pressure: Translation in times of austerity.” Perspectives25 (3): 464–477. doi:  10.1080/0907676X.2017.1285331
    https://doi.org/10.1080/0907676X.2017.1285331 [Google Scholar]
  27. 2020 “A Tiny Cog in a Large Machine”: Digital Taylorism in the translation industry.” Translation Spaces9 (1): 12–34. doi:  10.1075/ts.00019.moo
    https://doi.org/10.1075/ts.00019.moo [Google Scholar]
  28. Moran, John
    2018 “Extensive CAT Tool Logging: Big Brother or language technology evaluation panacea?” InITI Research Network e-book 2018: The human and the machine, 3. Institute of Translation and Interpreting. Accessed09 April 2021. https://www.iti.org.uk/resource/iti-research-ebook-translation-interpreting-2018.html
    [Google Scholar]
  29. O’Brien, Sharon
    2011 “Towards Predicting Post-Editing Productivity.” Machine Translation25 (3): 197–215. doi:  10.1007/s10590‑011‑9096‑7
    https://doi.org/10.1007/s10590-011-9096-7 [Google Scholar]
  30. Olohan, Maeve
    2011 “Translators and Translation Technology: The dance of agency.” Translation Studies4 (3): 342–357. doi:  10.1080/14781700.2011.589656
    https://doi.org/10.1080/14781700.2011.589656 [Google Scholar]
  31. O’Neil, Cathy
    2016Weapons of Math Destruction: How big data increases inequality and threatens democracy. New York: Crown.
    [Google Scholar]
  32. Ragni, Valentina, Elisa Alonso, and Lucas Nunes Vieira
    . forthcoming. Translation Productivity: Tools, tracking, ethics. Forthcoming.
    [Google Scholar]
  33. Ranganathan, Aruna, and Alan Benson
    2020 “A Numbers Game: Quantification of work, auto-gamification, and worker productivity.” American Sociological Review85 (4): 573–609. doi:  10.1177/0003122420936665
    https://doi.org/10.1177/0003122420936665 [Google Scholar]
  34. Salkind, Neil J.
    2010Encyclopedia of Research Design (Vols.1–0). Thousand Oaks, CA: SAGE Publications. doi:  10.4135/9781412961288
    https://doi.org/10.4135/9781412961288 [Google Scholar]
  35. RWS
    RWS. n.d.Translation Productivity. RWS. Accessed21 June. https://community.sdl.com/product-groups/translationproductivity/
    [Google Scholar]
  36. RWS Community [Google Scholar]
  37. Srnicek, Nick
    2017Platform Capitalism. Cambridge: Polity.
    [Google Scholar]
  38. Starkmann, Angela
    2020 “Need a Productivity Boost? Read how memoQ’s main features can help.” memoQ Blog. Accessed09 April 2021. https://blog.memoq.com/productivity-boost-memoq-features#:~:text=memoQ%20is%20a%20great%20CAT,learning%20how%20to%20use%20it
    [Google Scholar]
  39. Straker
    Straker. n.d.XRAY – Data analytics engine. Straker. Accessed16 September 2020. https://www.strakertranslations.com/ray/xray/
    [Google Scholar]
  40. Swaine, Lucas
    2016 “The Origins of Autonomy.” History of Political Thought37 (2): 216–237.
    [Google Scholar]
  41. TAUS
    TAUS 2020Real-time Translation Analytics. Translation Automation User Society. Accessed09 April 2021. https://www.taus.net/data/dqf
    [Google Scholar]
  42. Toral, Antonio, Martijn Wieling, and Andy Way
    2018 “Post-editing Effort of a Novel With Statistical and Neural Machine Translation.” Frontiers in Digital Humanities5: 9. Accessed09 April 2021. doi:  10.3389/fdigh.2018.00009
    https://doi.org/10.3389/fdigh.2018.00009 [Google Scholar]
  43. Vieira, Lucas Nunes, and Elisa Alonso
    2018The Use of Machine Translation in Human Translation Workflows: Practices, perceptions and knowledge exchange. Institute of Translation and Interpreting. Accessed09 April 2021. https://www.iti.org.uk/resource/the-use-of-machine-translation-in-human-translation-workflows.html
    [Google Scholar]
  44. Webber, Ashleigh
    2020 “PwC Facial Recognition Tool Criticised for Home Working Privacy Invasion.” Personnel Today. DVV Media International. Accessed09 April 2021. https://www.personneltoday.com/hr/pwc-facial-recognition-tool-criticised-for-home-working-privacy-invasion/
    [Google Scholar]
  45. Zheng, Binghan, Sandra Báez, Li Su, Xia Xiang, Susanne Weis, Agustín Ibáñez, and Adolfo M. García
    2020 “Semantic and Attentional Networks in Bilingual Processing: fMRI connectivity signatures of translation directionality.” Brain and Cognition143: 105584. doi:  10.1016/j.bandc.2020.105584
    https://doi.org/10.1016/j.bandc.2020.105584 [Google Scholar]
  46. Zuboff, Shoshana
    2019The Age of Surveillance Capitalism: The fight for a human future at the new frontier of power. London: Profile Books.
    [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error