1887
image of Morphological complexity as a predictor of cognitive effort in neural machine translation post-editing
USD
Buy:$35.00 + Taxes

Abstract

Abstract

This study examines how morphological complexity affects cognitive effort in neural machine translation (NMT) post-editing across six languages. Analysis of the DivEMT dataset shows that morphologically richer target languages like Ukrainian and Turkish require more editing time, keystrokes, and frequent pauses, indicating higher cognitive demands. Vietnamese, despite simpler morphology, also showed high cognitive effort, suggesting other factors like syntax influence processing load. Mean Size of Paradigm (MSP) analysis confirmed Ukrainian and Turkish’s high morphological complexity compared to isolating languages like Vietnamese. Higher error rates in morphologically rich languages demonstrate increased editing needs. While user perceptions varied, the data reveals that greater linguistic distance correlates with higher cognitive effort in NMT post-editing, showing typological divergence impacts beyond morphology alone.

Loading

Article metrics loading...

/content/journals/10.1075/tcb.24002.abu
2024-12-03
2025-01-20
Loading full text...

Full text loading...

References

  1. Agrawal, Sweta, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan Ghazvininejad
    2023 “In-Context Examples Selection for Machine Translation.” InFindings of the Association for Computational Linguistics: ACL 2023, –. Toronto, Canada: Association for Computational Linguistics. 10.18653/v1/2023.findings‑acl.564
    https://doi.org/10.18653/v1/2023.findings-acl.564 [Google Scholar]
  2. Almanna, Ali, and Rafik Jamoussi
    2022 “NMT Verb Rendering: A Cognitive Approach to Informing Arabic-into-English Post-Editing.” Open Linguistics (): –. 10.1515/opli‑2022‑0192
    https://doi.org/10.1515/opli-2022-0192 [Google Scholar]
  3. Alvarez, Sergi, Antoni Oliver, and Toni Badia
    2019 “Does NMT Make a Difference When Post-Editing Closely Related Languages? The Case of Spanish-Catalan.” InProceedings of Machine Translation Summit XVII: Translator, Project and User Tracks, –. Dublin, Ireland: European Association for Machine Translation. https://aclanthology.org/W19-6708
    [Google Scholar]
  4. Arenas, Ana Guerberof
    2014 “The Role of Professional Experience in Post-Editing from a Quality and Productivity Perspective.” In. https://www.semanticscholar.org/paper/The-role-of-professional-experience-in-post-editing-Arenas/55c0f2e8cb0495f225174d487056e0f45bb11fb5
  5. Aronoff, Mark [Google Scholar]
  6. Aziz, Wilker, Ruslan Mitkov, and Lucia Specia
    2013 “Ranking Machine Translation Systems via Post-Editing.” InText, Speech, and Dialogue, edited byIvan Habernal and Václav Matoušek, –. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. 10.1007/978‑3‑642‑40585‑3_52
    https://doi.org/10.1007/978-3-642-40585-3_52 [Google Scholar]
  7. Bakker, Dik, André Müller, Viveka Velupillai, Søren Wichmann, Cecil H. Brown, Pamela Brown, Dmitry Egorov, Robert Mailhammer, Anthony Grant, and Eric W. Holman
    2009 “Adding Typology to Lexicostatistics: A Combined Approach to Language Classification.” Linguistic Typology (). 10.1515/LITY.2009.009
    https://doi.org/10.1515/LITY.2009.009 [Google Scholar]
  8. Balling, Laura Winther, Michael Carl, and Sharon O’Brian [Google Scholar]
  9. Bannert, Maria
    2002 “Managing Cognitive Load — Recent Trends in Cognitive Load Theory.” Learning and Instruction (): –. 10.1016/S0959‑4752(01)00021‑4
    https://doi.org/10.1016/S0959-4752(01)00021-4 [Google Scholar]
  10. Bentz, Christian, Dimitrios Alikaniotis, Michael Cysouw, and Ramon Ferrer-i-Cancho
    2017 “The Entropy of Words — Learnability and Expressivity across More than 1000 Languages.” Entropy (): . 10.3390/e19060275
    https://doi.org/10.3390/e19060275 [Google Scholar]
  11. Blache, P.
    2011 “A Computational Model for Linguistic Complexity.” Biology, Computation and Linguistics. https://www.semanticscholar.org/paper/A-computational-model-for-linguistic-complexity-Blache/c61629d8f26bfc3cdfd17a94c16a447cb35964b5
    [Google Scholar]
  12. Boudelaa, Sami, and William D. Marslen-Wilson
    2015 “Structure, Form, and Meaning in the Mental Lexicon: Evidence from Arabic.” Language, Cognition and Neuroscience (): –. 10.1080/23273798.2015.1048258
    https://doi.org/10.1080/23273798.2015.1048258 [Google Scholar]
  13. Brezina, Vaclav, and Gabriele Pallotti
    2019 “Morphological Complexity in Written L2 Texts.” Second Language Research (): –. 10.1177/0267658316643125
    https://doi.org/10.1177/0267658316643125 [Google Scholar]
  14. Bulté, Bram, and Alex Housen
    2012 “Defining and Operationalising L2 Complexity.” InDimensions of L2 Performance and Proficiency: Complexity, Accuracy and Fluency in SLA, edited byAlex Housen, Folkert Kuiken, and Ineke Vedder, –. Language Learning & Language Teaching. John Benjamins Publishing Company. 10.1075/lllt.32.02bul
    https://doi.org/10.1075/lllt.32.02bul [Google Scholar]
  15. Castilho, Sheila, Joss Moorkens, Federico Gaspari, Iacer Calixto, John Tinsley, and Andy Way
    2017 “Is Neural Machine Translation the New State of the Art?” The Prague Bulletin of Mathematical Linguistics, no.. archive.sciendo.com/PRALIN/pralin.2017.108.issue-1/pralin-2017-0013/pralin-2017-0013.pdf. 10.1515/pralin‑2017‑0013
    https://doi.org/10.1515/pralin-2017-0013 [Google Scholar]
  16. Chen, Ouhao, Fred Paas, and John Sweller
    2023 “A Cognitive Load Theory Approach to Defining and Measuring Task Complexity Through Element Interactivity.” Educational Psychology Review (): . 10.1007/s10648‑023‑09782‑w
    https://doi.org/10.1007/s10648-023-09782-w [Google Scholar]
  17. Çöltekin, Çagri, and Taraka Rama
    2018 “EXPLOITING UNIVERSAL DEPENDENCIES TREEBANKS FOR MEASURING MORPHOSYNTACTIC COMPLEXITY.” In. https://www.semanticscholar.org/paper/EXPLOITING-UNIVERSAL-DEPENDENCIES-TREEBANKS-FOR-%C3%87%C3%B6ltekin-Rama/d02ad0cdb45944481357acad4ccdb77c503a4d5d
  18. Çöltekin, Çağrı, and Taraka Rama
    2022 “What Do Complexity Measures Measure? Correlating and Validating Corpus-Based Measures of Morphological Complexity.” arXiv. 10.48550/arXiv.2204.05056
    https://doi.org/10.48550/arXiv.2204.05056 [Google Scholar]
  19. Cotterell, Ryan, Christo Kirov, Mans Hulden, and Jason Eisner
    2019 “On the Complexity and Typology of Inflectional Morphological Systems.” Transactions of the Association for Computational Linguistics (June):–. 10.1162/tacl_a_00271
    https://doi.org/10.1162/tacl_a_00271 [Google Scholar]
  20. Covington, Michael A., and Joe D. McFall
    2010 “Cutting the Gordian Knot: The Moving-Average Type–Token Ratio (MATTR).” Journal of Quantitative Linguistics (): –. 10.1080/09296171003643098
    https://doi.org/10.1080/09296171003643098 [Google Scholar]
  21. De La Torre García, Nuria, María Cecilia Ainciburu, and Kris Buyse
    2021 “Morphological Complexity and Rated Writing Proficiency: The Case of Verbal Inflectional Diversity in L2 Spanish.” ITL — International Journal of Applied Linguistics (): –. 10.1075/itl.20009.del
    https://doi.org/10.1075/itl.20009.del [Google Scholar]
  22. Debue, Nicolas, and Cécile Van De Leemput
    2014 “What Does Germane Load Mean? An Empirical Contribution to the Cognitive Load Theory.” Frontiers in Psychology:1099. 10.3389/fpsyg.2014.01099
    https://doi.org/10.3389/fpsyg.2014.01099 [Google Scholar]
  23. DeKeyser, Robert M. [Google Scholar]
  24. Göksel, Aslı, and Celia Kerslake https://doi.org/10.4324/9780203340769 [Google Scholar]
  25. Gutierrez-Vasques, Ximena, and Victor Mijangos
    2019 “Productivity and Predictability for Measuring Morphological Complexity.” Entropy (): . 10.3390/e22010048
    https://doi.org/10.3390/e22010048 [Google Scholar]
  26. Hart, S. G.
    1988 “Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research.” Human Mental Workload/Elsevier. 10.1016/S0166‑4115(08)62386‑9
    https://doi.org/10.1016/S0166-4115(08)62386-9 [Google Scholar]
  27. Herbig, Nico, Santanu Pal, Mihaela Vela, Antonio Krüger, and Josef van Genabith
    2019 “Multi-Modal Indicators for Estimating Perceived Cognitive Load in Post-Editing of Machine Translation.” Machine Translation (): –. 10.1007/s10590‑019‑09227‑8
    https://doi.org/10.1007/s10590-019-09227-8 [Google Scholar]
  28. Hockett, Charles F.
    1958A Course in Modern Linguistics. Pearson College Div. 10.1111/j.1467‑1770.1958.tb00870.x
    https://doi.org/10.1111/j.1467-1770.1958.tb00870.x [Google Scholar]
  29. Housen, Alex, and Hannelore Simoens
    2016 “Introduction: Cognitive Perspectives on Difficulty and Complexity in L2 Acquisition.” Studies in Second Language Acquisition (): –. 10.1017/S0272263116000176
    https://doi.org/10.1017/S0272263116000176 [Google Scholar]
  30. Inglese, Guglielmo, and Luca Brigada Villa
    2021 “Inferring Morphological Complexity from Syntactic Dependency Networks: A Test.” InProceedings of the Third Workshop on Computational Typology and Multilingual NLP, –. Online: Association for Computational Linguistics. 10.18653/v1/2021.sigtyp‑1.2
    https://doi.org/10.18653/v1/2021.sigtyp-1.2 [Google Scholar]
  31. Jia, Yanfang, and Si Lai
    2022 “Post-Editing Metaphorical Expressions: Productivity, Quality, and Strategies.” Journal of Foreign Languages and Cultures (): –. 10.53397/hunnu.jflc.202202004
    https://doi.org/10.53397/hunnu.jflc.202202004 [Google Scholar]
  32. Jia, Yanfang, and Binghan Zheng
    2022 “The Interaction Effect between Source Text Complexity and Machine Translation Quality on the Task Difficulty of NMT Post-Editing from English to Chinese: A Multi-Method Study.” Across Languages and Cultures (). 10.1556/084.2022.00120
    https://doi.org/10.1556/084.2022.00120 [Google Scholar]
  33. Johnson, Tamar, Kexin Gao, Kenny Smith, Hugh Rabagliati, and Jennifer Culbertson
    2020 “Predictive Structure or Paradigm Size? Investigating the Effects of i-Complexity and e-Complexity on the Learnability of Morphological Systems.” https://psyarxiv.com/qns6v/download?format=pdf. 10.31234/osf.io/qns6v
    https://doi.org/10.31234/osf.io/qns6v
  34. Juola, Patrick
    1998 “Measuring Linguistic Complexity: The Morphological Tier.” Journal of Quantitative Linguistics (): –. 10.1080/09296179808590128
    https://doi.org/10.1080/09296179808590128 [Google Scholar]
  35. Kettunen, Kimmo
    2014 “Can Type-Token Ratio Be Used to Show Morphological Complexity of Languages?” Journal of Quantitative Linguistics (): –. 10.1080/09296174.2014.911506
    https://doi.org/10.1080/09296174.2014.911506 [Google Scholar]
  36. Klepsch, Melina, and Tina Seufert
    2020 “Understanding Instructional Design Effects by Differentiated Measurement of Intrinsic, Extraneous, and Germane Cognitive Load.” Instructional Science (): –. 10.1007/s11251‑020‑09502‑9
    https://doi.org/10.1007/s11251-020-09502-9 [Google Scholar]
  37. Koplenig, Alexander, Peter Meyer, Sascha Wolfer, and Carolin Müller-Spitzer
    2017 “The Statistical Trade-off between Word Order and Word Structure — Large-Scale Evidence for the Principle of Least Effort.” PLOS ONE (): e0173614. 10.1371/journal.pone.0173614
    https://doi.org/10.1371/journal.pone.0173614 [Google Scholar]
  38. Koponen, Maarit
    2016 “Machine Translation Post-Editing and Effort. Empirical Studies on the Post-Editing Process.” In. https://www.semanticscholar.org/paper/Machine-Translation-Post-editing-and-Effort.-on-the-Koponen/53e1017ab731f5ee9bf709047a2eb08bd9ef083d
  39. Koponen, Maarit, Wilker Aziz, Luciana Ramos, Lucia Specia, J. Rautio, Meritxell González, Lauri Carlson, and C. España-Bonet
  40. Krings, Hans P.
    2001Repairing Texts: Empirical Investigations of Machine Translation Post-Editing Processes. Vol.. Kent State University Press. https://books.google.com/books?hl=en&lr=&id=vsdPsIXCiWAC&oi=fnd&pg=PP15&dq=Post+editing+holds+significant+promise+for+training+translators&ots=AcEDi5xJxh&sig=e2CjDycTGqqT7wPwYyYVh6Mrg2M
    [Google Scholar]
  41. Lacruz, Isabel, Michael Denkowski, and Alon Lavie
    2014 “Cognitive Demand and Cognitive Effort in Post-Editing.” InProceedings of the 11th Conference of the Association for Machine Translation in the Americas, –. Vancouver, Canada: Association for Machine Translation in the Americas. https://aclanthology.org/2014.amta-wptp.6
    [Google Scholar]
  42. Leblebi̇Ci̇, Ata
    2023 “THE RELATIONSHIP BETWEEN LINGUISTIC DISTANCE AND NEURAL MACHINE TRANSLATION QUALITY.”
    [Google Scholar]
  43. Lee, Jiyong
    2019 “Task Complexity, Cognitive Load, and L1 Speech.” Applied Linguistics (): –. 10.1093/applin/amx054
    https://doi.org/10.1093/applin/amx054 [Google Scholar]
  44. Lee, Seungjun, Jungseob Lee, Hyeonseok Moon, Chanjun Park, Jaehyung Seo, Sugyeong Eo, Seonmin Koo, and Heuiseok Lim
    2023 “A Survey on Evaluation Metrics for Machine Translation.” Mathematics (): . 10.3390/math11041006
    https://doi.org/10.3390/math11041006 [Google Scholar]
  45. Leppink, Jimmie, Fred Paas, Cees P. M. Van Der Vleuten, Tamara Van Gog, and Jeroen J. G. Van Merriënboer
    2013 “Development of an Instrument for Measuring Different Types of Cognitive Load.” Behavior Research Methods (): –. 10.3758/s13428‑013‑0334‑1
    https://doi.org/10.3758/s13428-013-0334-1 [Google Scholar]
  46. Maibam, Indika, and Bipul Syam Purkayastha
    2023 “Reordering of Source Side for a Factored English to Manipuri SMT System.” International Journal of Electrical and Computer Engineering Systems (): –. 10.32985/ijeces.14.3.6
    https://doi.org/10.32985/ijeces.14.3.6 [Google Scholar]
  47. McWhorter, John H.
    2001 “The Worlds Simplest Grammars Are Creole Grammars.” Linguistic Typology (). 10.1515/lity.2001.001
    https://doi.org/10.1515/lity.2001.001 [Google Scholar]
  48. Mithun, Marianne
    2020 “Where Is Morphological Complexity?” InThe Complexities of Morphology, edited byPeter Arkadiev and Francesco Gardani, . Oxford University Press. 10.1093/oso/9780198861287.003.0012
    https://doi.org/10.1093/oso/9780198861287.003.0012 [Google Scholar]
  49. Moscoso del Prado, Fermin
    2011 “The Mirage of Morphological Complexity.” InProceedings of the Annual Meeting of the Cognitive Science Society. Vol.. https://escholarship.org/content/qt7nb4r0d7/qt7nb4r0d7.pdf
    [Google Scholar]
  50. Naismith, Laura M., and Rodrigo B. Cavalcanti
    2017 “Measuring Germane Load Requires Correlation with Learning.” Medical Education (): . 10.1111/medu.13134
    https://doi.org/10.1111/medu.13134 [Google Scholar]
  51. O’Brien, Sharon
    2006 “Pauses as Indicators of Cognitive Effort in Post-Editing Machine Translation Output:” Across Languages and Cultures (): –. 10.1556/Acr.7.2006.1.1
    https://doi.org/10.1556/Acr.7.2006.1.1 [Google Scholar]
  52. Oflazer, Kemal
    1994 “Two-Level Description of Turkish Morphology.” Literary and Linguistic Computing (): –. 10.1093/llc/9.2.137
    https://doi.org/10.1093/llc/9.2.137 [Google Scholar]
  53. Orr, Robert
    2014 “Slavica et Islamica: Ukrainian in Context by Andreii Danylenko.” Journal of Slavic Linguistics (): –. 10.1353/jsl.2014.0013
    https://doi.org/10.1353/jsl.2014.0013 [Google Scholar]
  54. Paas, Fred G. W. C., Jeroen J. G. Van Merriënboer, and Jos J. Adam
    1994 “Measurement of Cognitive Load in Instructional Research.” Perceptual and Motor Skills (): –. 10.2466/pms.1994.79.1.419
    https://doi.org/10.2466/pms.1994.79.1.419 [Google Scholar]
  55. Paas, Fred, and John Sweller
    2012 “An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks.” Educational Psychology Review (): –. 10.1007/s10648‑011‑9179‑2
    https://doi.org/10.1007/s10648-011-9179-2 [Google Scholar]
  56. Paas, Fred, and Tamara Van Gog
    2006 “Optimising Worked Example Instruction: Different Ways to Increase Germane Cognitive Load.” Learning and Instruction. Elsevier. https://www.sciencedirect.com/science/article/pii/S0959475206000181?casa_token=UDtXbmxqWGUAAAAA:arWZl16PuyK7Y793ldfJskwi1DP0PkpVant7dizn0aKaDNnrTjnRYZH66GhG3-b0roW_bGp-rTs
    [Google Scholar]
  57. Popović, Maja, and Mihael Arčan
    2016 “PE2rr Corpus: Manual Error Annotation of Automatically Pre-Annotated MT Post-Edits.” InProceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), –. Portorož, Slovenia: European Language Resources Association (ELRA). https://aclanthology.org/L16-1005
    [Google Scholar]
  58. Ryding, Karin C.
    2005A Reference Grammar of Modern Standard Arabic. Reference Grammars. Cambridge: Cambridge University Press. 10.1017/CBO9780511486975
    https://doi.org/10.1017/CBO9780511486975 [Google Scholar]
  59. 2014 “Arabic Linguistics: Overview and History.” Cambridge University Press. https://www.academia.edu/download/80434006/9781107023314_excerpt.pdf
  60. Sarti, Gabriele, Arianna Bisazza, Ana Guerberof-Arenas, and Antonio Toral
    2022 “DivEMT: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages.” InProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, –. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics. 10.18653/v1/2022.emnlp‑main.532
    https://doi.org/10.18653/v1/2022.emnlp-main.532 [Google Scholar]
  61. Sennrich, Rico
    2015 “Neural Machine Translation of Rare Words with Subword Units.” arXiv Preprint arXiv:1508.07909. https://www.research.ed.ac.uk/files/174256085/Neural_Machine_Translation_SENNRICH_DOA24052016_VOR_CC_BY.pdf
    [Google Scholar]
  62. Shah, Ritesh, Christian Boitet, Pushpak Bhattacharyya, Mithun Padmakumar, Leonardo Zilio, Ruslan Kalitvianski, Mohammad Nasiruddin, Mutsuko Tomokiyo, and Sandra Castellanos Páez
    2015 “Post-Editing a Chapter of a Specialized Textbook into 7 Languages: Importance of Terminological Proximity with English for Productivity.” InProceedings of the 12th International Conference on Natural Language Processing, –. Trivandrum, India: NLP Association of India. https://aclanthology.org/W15-5947
    [Google Scholar]
  63. Skadiņa, Inguna, and Mārcis Pinnis
    2017 “NMT or SMT: Case Study of a Narrow-Domain English-Latvian Post-Editing Project.” InProceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), –. Taipei, Taiwan: Asian Federation of Natural Language Processing. https://aclanthology.org/I17-1038
    [Google Scholar]
  64. Snover, Matthew, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John Makhoul
    2006 “A Study of Translation Edit Rate with Targeted Human Annotation.” InProceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, –. Cambridge, Massachusetts, USA: Association for Machine Translation in the Americas. https://aclanthology.org/2006.amta-papers.25
    [Google Scholar]
  65. Specia, Lucia, Kim Harris, Frédéric Blain, Aljoscha Burchardt, Viviven Macketanz, Inguna Skadin, Matteo Negri, and Marco Turchi
    2017 “Translation Quality and Productivity: A Study on Rich Morphology Languages.” InProceedings of Machine Translation Summit XVI: Research Track, –. Nagoya Japan. https://aclanthology.org/2017.mtsummit-papers.5
    [Google Scholar]
  66. Strötgen, Jannik, Ayser Armiti, Tran Van Canh, Julian Zell, and Michael Gertz
    2014 “Time for More Languages: Temporal Tagging of Arabic, Italian, Spanish, and Vietnamese.” ACM Transactions on Asian Language Information Processing (): –. 10.1145/2540989
    https://doi.org/10.1145/2540989 [Google Scholar]
  67. Stump, Gregory
    2019 “Paradigm Function Morphology.” The Oxford Handbook of Morphological Theory, –.
    [Google Scholar]
  68. Stump, Gregory T.
    2001 “Inflectional Morphology: A Theory of Paradigm Structure.” Cambridge University Press. https://oxfordre.com/linguistics/display/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-246. 10.1017/CBO9780511486333
    https://doi.org/10.1017/CBO9780511486333
  69. Sweller, John
    1988 “Cognitive Load during Problem Solving: Effects on Learning.” Cognitive Science (): –. 10.1207/s15516709cog1202_4
    https://doi.org/10.1207/s15516709cog1202_4 [Google Scholar]
  70. 1994 “Cognitive Load Theory, Learning Difficulty, and Instructional Design.” Learning and Instruction (): –. 10.1016/0959‑4752(94)90003‑5
    https://doi.org/10.1016/0959-4752(94)90003-5 [Google Scholar]
  71. 2010 “Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load.” Educational Psychology Review:–. 10.1007/s10648‑010‑9128‑5
    https://doi.org/10.1007/s10648-010-9128-5 [Google Scholar]
  72. 2011 “CHAPTER TWO — Cognitive Load Theory.” InPsychology of Learning and Motivation, edited byJose P. Mestre and Brian H. Ross, :–. Academic Press. 10.1016/B978‑0‑12‑387691‑1.00002‑8
    https://doi.org/10.1016/B978-0-12-387691-1.00002-8 [Google Scholar]
  73. Sweller, John, Paul Ayres, and Slava Kalyuga
    2011 “Cognitive Load Theory,” January. 10.1007/978‑1‑4419‑8126‑4
    https://doi.org/10.1007/978-1-4419-8126-4 [Google Scholar]
  74. Sweller, John, Jeroen J. G. van Merrienboer, and Fred G. W. C. Paas
    1998 “Cognitive Architecture and Instructional Design.” Educational Psychology Review (): –. 10.1023/A:1022193728205
    https://doi.org/10.1023/A:1022193728205 [Google Scholar]
  75. Sweller, John, Jeroen J. G. Van Merriënboer, and Fred Paas
    2019 “Cognitive Architecture and Instructional Design: 20 Years Later.” Educational Psychology Review (): –. 10.1007/s10648‑019‑09465‑5
    https://doi.org/10.1007/s10648-019-09465-5 [Google Scholar]
  76. Tang, Yuqing, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and Angela Fan
    2021 “Multilingual Translation from Denoising Pre-Training.” InFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021, –. https://aclanthology.org/2021.findings-acl.304.pdf. 10.18653/v1/2021.findings‑acl.304
    https://doi.org/10.18653/v1/2021.findings-acl.304 [Google Scholar]
  77. Tatsumi, Midori, and Johann Roturier
    2010 “Source Text Characteristics and Technical and Temporal Post-Editing Effort: What Is Their Relationship.” InProceedings of the Second Joint EM+/CNGL Workshop: Bringing MT to the User: Research on Integrating MT in the Translation Industry, –. Denver, Colorado, USA: Association for Machine Translation in the Americas. https://aclanthology.org/2010.jec-1.6
    [Google Scholar]
  78. Templin, Mildred C.
    1957 “Certain Language Skills in Children; Their Development and Interrelationships.” https://psycnet.apa.org/record/1957-07556-000. 10.5749/j.ctttv2st
    https://doi.org/10.5749/j.ctttv2st
  79. Tesak, Jürgen
    1994 “Cognitive Load and the Processing of Grammatical Items.” Journal of Neurolinguistics (): –. 10.1016/0911‑6044(94)90005‑1
    https://doi.org/10.1016/0911-6044(94)90005-1 [Google Scholar]
  80. Toledo Báez, M. Cristina
    2021 “Machine Translation and Post-Editing : Impact of Training and Directionality on Quality and Productivity.”
    [Google Scholar]
  81. Van Der Slik, Frans, Roeland Van Hout, and Job Schepens
    2019 “The Role of Morphological Complexity in Predicting the Learnability of an Additional Language: The Case of La (Additional Language) Dutch.” Second Language Research (): –. 10.1177/0267658317691322
    https://doi.org/10.1177/0267658317691322 [Google Scholar]
  82. Venhuizen, Noortje J., Matthew W. Crocker, and Harm Brouwer
    2019 “Semantic Entropy in Language Comprehension.” Entropy (): . 10.3390/e21121159
    https://doi.org/10.3390/e21121159 [Google Scholar]
  83. Vieira, Lucas Nunes
    2014 “Indices of Cognitive Effort in Machine Translation Post-Editing.” Machine Translation (): –. 10.1007/s10590‑014‑9156‑x
    https://doi.org/10.1007/s10590-014-9156-x [Google Scholar]
  84. Wang, Yu, and Ali Jalalian Daghigh
    2023 “Cognitive Effort in Human Translation and Machine Translation Post-Editing Processes: A Holistic and Phased View.” FORUM. Revue Internationale d’interprétation et de Traduction / International Journal of Interpretation and Translation (): –. 10.1075/forum.22009.wan
    https://doi.org/10.1075/forum.22009.wan [Google Scholar]
  85. Watson, Janet C. E.
    2002The Phonology And Morphology Of Arabic. Oxford University Press. 10.1093/oso/9780199257591.001.0001
    https://doi.org/10.1093/oso/9780199257591.001.0001 [Google Scholar]
  86. Weng, Rongxiang, Qiang Wang, Wensen Cheng, Changfeng Zhu, and Min Zhang
    2023 “Towards Reliable Neural Machine Translation with Consistency-Aware Meta-Learning.” InProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, :–. AAAI’23/IAAI’23/EAAI’23. AAAI Press. 10.1609/aaai.v37i11.26606
    https://doi.org/10.1609/aaai.v37i11.26606 [Google Scholar]
  87. Xanthos, Aris, Sabine Laaha, Steven Gillis, Ursula Stephany, Ayhan Aksu-Koç, Anastasia Christofidou, Natalia Gagarina,
    2011 “On the Role of Morphological Richness in the Early Development of Noun and Verb Inflection.” First Language (): –. 10.1177/0142723711409976
    https://doi.org/10.1177/0142723711409976 [Google Scholar]
  88. Yamada, Masaru
    2019 “The Impact of Google Neural Machine Translation on Post-Editing by Student Translators.” The Journal of Specialised Translation (): –.
    [Google Scholar]
/content/journals/10.1075/tcb.24002.abu
Loading
/content/journals/10.1075/tcb.24002.abu
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error