1887
Volume 31, Issue 1
  • ISSN 0929-9971
  • E-ISSN: 1569-9994

Abstract

Abstract

Medical terminology is perceived as an obstacle for patients and family members to understand the medical message. In this context, plain language advocates for making specialised knowledge accessible to citizens. This article puts the synergy between medical terminology, plain language, and computational linguistics (a branch of Artificial Intelligence) on the table. Our purpose is to determine if Generative AI applications, like ChatGPT, can assist in creating glossaries of terms with their corresponding simple variants. For this, a relevant sub-field of medicine, cardiology, was taken as a case study, even though it could be extrapolated to other sub-fields. Next, a glossary of key cardiology terms was created following a classic methodological approach. Then, the most relevant phases of the process (terminology extraction, search for synonyms, and selection of the clearest synonym) were reproduced using ChatGPT. The results of the comparative study between both approaches give a glimpse of the extent to which this technology can be a useful resource for creating glossaries that can be employed for writing using plain language.

Available under the CC BY 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/term.00083.vid
2025-05-23
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/term.00083.vid.html?itemId=/content/journals/10.1075/term.00083.vid&mimeType=html&fmt=ahah

References

  1. Abt-Sacks, Analía, Susana Pablo-Hernando, Pedro Serrano-Aguilar, Enrique Fernández-Vega, and Roberto Martín Fernández
    2013 “Necesidades de información y uso de Internet en pacientes con cáncer de mama en España” [Information needs and Internet use in breast cancer patients in Spain]. Gaceta Sanitaria, 27(3): 241–247. 10.1016/j.gaceta.2012.06.014
    https://doi.org/10.1016/j.gaceta.2012.06.014 [Google Scholar]
  2. Ananiadou, Sophia
    1994 “A Methodology for Automatic Term Recognition”. InCOLING 1994 Volume 2: The 15th International Conference on Computational Linguistics. 10.3115/991250.991317
    https://doi.org/10.3115/991250.991317 [Google Scholar]
  3. Anguita, Manuel P.
    2009Diccionario Lid Cardiología. Madrid, Spain: LID Editorial Empresarial.
    [Google Scholar]
  4. Anthropic, Claude
  5. Araújo, Sílvia, and Micaela Aguiar
    2023 “Simplifying Specialized Texts with AI: A ChatGPT-Based Learning Scenario”. InSmart Innovation, Systems and Technologies. Perspectives and Trends in Education and Technology, ed. byMesquita, Annabela, António Abreu, Joao Vidal Carvalho, Cleuciliz Santana, and Cristina Helena Pinto de Mello, 3661: 599–609. Springer. 10.1007/978‑981‑99‑5414‑8_55
    https://doi.org/10.1007/978-981-99-5414-8_55 [Google Scholar]
  6. Arratibel, Patricia, Rafael Bengoa, and Gabriel Rafael
    2022La situación de las enfermedades cardiovasculares en España. Principales factores de riesgo e impacto en la gestión de las enfermedades crónicas [The situation of cardiovascular diseases in Spain. Main risk factors and impact on chronic disease management]. Fundación Alternativas, 211. ISBN978-84-18677-45-8
    [Google Scholar]
  7. Basagoiti, Ignasio
    (coord.) 2012Alfabetitzación en salut: de la información a la acción [Health literacy: from information to action]. Valencia, Spain: Itaca. ISBN978-84-695-5267-4.
    [Google Scholar]
  8. Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, et al
    2020 “Language Models are Few-Shot Learners.” arXiv [Cs.CL]. arxiv.org/abs/2005.14165
  9. Cabré, Maria Teresa
    2009 “La Teoría Comunicativa de la Terminología, una aproximación lingüística a los términos” [The Communicative Theory of Terminology, a linguistic approach to terms]. Revue française de linguistique appliquée, XIV1:9–15. 10.3917/rfla.142.0009
    https://doi.org/10.3917/rfla.142.0009 [Google Scholar]
  10. Cabré, Maria Teresa, Ona Domènech-Bagaria, and Rosa Estopà
    2018La terminologia avui: termes, textos i aplicacions [Terminology today: terms, texts and applications]. Barcelona, Spain: Universitat Oberta de Catalunya.
    [Google Scholar]
  11. Cabré, Maria Teresa
    2004 “La terminología en la traducción especializada” [Terminology in specialized translation]. InManual de documentación y terminología para la traducción especializada [Documentation and Terminology Manual for Specialized Translation], ed. byGonzalo García, Consuelo, and Valentín García Yebra, 89–126. Madrid: Arco.
    [Google Scholar]
  12. 1999La terminología: representación y comunicación. Elementos para una teoría de base comunicativa y otros artículos [Terminology: representation and communication. Elements for a theory of communicative basis and other articles]. Barcelona, Spain: Institut Universitari de Lingüística Aplicada. 10.1075/tlrp.1
    https://doi.org/10.1075/tlrp.1 [Google Scholar]
  13. Cabré, M. Teresa and Iria da Cunha
    2022 “El papel de los corpus en la terminología: una mirada específica a la terminología del español” [The role of corpora in terminology: a specific look at Spanish terminology]. InLingüística de corpus en español / The Routledge Handbook of Spanish Corpus Linguistics, ed. byParodi, Giovanni, Pascual Cantos, and Lewis C. Howe, 190–204. London: Routledge. ISBN9780367350123. 10.4324/9780429329296‑16
    https://doi.org/10.4324/9780429329296-16 [Google Scholar]
  14. Callava, Marta and Roberto Silva
    . “Automating term management activities with AI: a CASE STUDY of generative AI for metadata generation and intelligent terminology extraction”. Paper presented atEAFT Terminology Summit, Barcelona, November 17, 2023.
    [Google Scholar]
  15. Campillos-Llanos, Leonardo, Rocío Bartolomé, and Ana R. Reinares, Sofía Puig, Ana Valverde-Mateos, and Adrian Capllonch
    2024 “Enhancing the understanding of clinical trials with a sentence-level simplification dataset”. Procesamiento de Lenguaje Natural, 741: 31–43.
    [Google Scholar]
  16. Campillos-Llanos, Leonardo, Ana R. Reinares, Sofía Puig, Ana Valverde-Mateos, and Adrian Capllonch
    2022 “Building a comparable corpus and a benchmark for Spanish medical text simplification”. Procesamiento de Lenguaje Natural, 691: 189–196.
    [Google Scholar]
  17. Da Cunha, Iria
    2020El discurso del ámbito de la Administración. Una perspectiva lingüística [The discourse of the Administration field. A linguistic perspective]. Granada, Spain: Comares. ISBN978-84-9045-955-3
    [Google Scholar]
  18. 2024 (in press). “Inteligencia artificial y lenguaje claro en español” [Artificial intelligence and plain language in Spanish]. InLenguaje claro en Iberoamérica. Principios y prácticas [Plain Language in Ibero-America. Principles and practices], ed. byRetegui, Alejandro R., and Fernando. Thomson Reuters — La Ley Argentina.
    [Google Scholar]
  19. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.
    2019 “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”. InProceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
    [Google Scholar]
  20. De Schryver, Gilles-Maurice
    2023 “Generative AI and Lexicography: The Current State of the Art Using ChatGPT”. International Journal of Lexicography, 36(4): 355–387. 10.1093/ijl/ecad021
    https://doi.org/10.1093/ijl/ecad021 [Google Scholar]
  21. Di Nunzio, Giorgio Maria, Stefano Marchesin, and Gianmaria Silvello
    2023 “A systematic review of Automatic Term Extraction: What happened in 2022?”. Digital Scholarship in the Humanities, 38(1): i41–i47. 10.1093/llc/fqad030
    https://doi.org/10.1093/llc/fqad030 [Google Scholar]
  22. Domènech-Bagaria, Ona, Rosa Estopà, and Laia Vidal-Sabanés
    2020 “La comprensión de los informes médicos” [Understanding medical reports]. InLos informes médicos: estrategias lingüísticas para favorecer su comprensión [Medical reports: linguistic strategies to promote their comprehension], coord. byEstopà, Rosa. Buenos Aires, Argentina: Delhospital. ISBN978-987-8349-12-1.
    [Google Scholar]
  23. Eloundou, Tyna, Sam Manning, Pamela Mishkin, and Daniel Rock
    2023 “GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models”. Papers 2303.10130, arXiv.org.
    [Google Scholar]
  24. Estopà, Rosa, and Maria Amor Montané
    2020 “Terminology in medical reports: Textual parameters and their lexical indicators that hinder patient understanding”. Terminology: International Journal of Theoretical and Applied Issues in Specialized Communication, 261:213–236. 10.1075/term.00051.est
    https://doi.org/10.1075/term.00051.est [Google Scholar]
  25. Estopà, Rosa
    1999 Extracció de terminologia: elements per a la construcció d’un SEACUSE (Sistema d’Extracció Automàtica de Candidats a Unitats de Significació Especialitzada) [Terminology extraction: elements for the construction of a SEACUSE (System for the Automatic Extraction of Candidates to Units of Specialized Significance)]. Barcelona: Universitat Pompeu Fabra. Institut Universitari de Lingüística Aplicada. [Doctoral Dissertation].
  26. Faber, Pamela
    2009 “The Cognitive Shift in Terminology and Specialized Translation”. MonTI. Monografías de Traducción e Interpretación, 11: 107–134.
    [Google Scholar]
  27. Fernández Silva, Sabela and Maribel Tercedor
    2019 “El desarrollo de la competencia sobre variación terminológica en estudiantes de traducción e interpretación. Una experiencia de colaboración interuniversitaria” [The development of terminological variation competence in translation and interpreting students. An experience of inter-university collaboration]. RLA: Revista de lingüística teórica y aplicada, 57(2): 137–163. 10.4067/S0718‑48832019000200137
    https://doi.org/10.4067/S0718-48832019000200137 [Google Scholar]
  28. Gao, Tianyu, Adam Fisch, and Danqi Chen
    2021 “Making pre-trained language models better few-shot learners”. InProceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), edited byChengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, 3816–3830. Stroudsburg, PA: Association for Computational Linguistics. 10.18653/v1/2021.acl‑long.295
    https://doi.org/10.18653/v1/2021.acl-long.295 [Google Scholar]
  29. Garbers, Samantha, and Mary Ann Chiasson
    2004 “Inadequate functional health literacy in Spanish as a barrier to cervical cancer screening among immigrant Latinas in New York City”. Preventing chronic disease, 1(4), A07.
    [Google Scholar]
  30. Generalitat de Catalunya. Departament de Salut, and TERMCAT. Centre de Terminologia
    Generalitat de Catalunya. Departament de Salut, and TERMCAT. Centre de Terminologia 2022Terminologia de la salut cardiovascular [Cardiovascular health terminology]. Barcelona, Spain: TERMCAT. Centre de Terminologia. https://www.termcat.cat/ca/diccionaris-en-linia/313
    [Google Scholar]
  31. Google, Gemini
  32. Heinisch, Barbara
    . “ChatGPT prompting in a university course on Terminology”. Paper presented atEAFT Terminology Summit, Barcelona, November 17, 2023.
    [Google Scholar]
  33. International Plain Language Federation
    International Plain Language Federation 2024 (online). Plain Language definitions. https://www.iplfederation.org/plain-language/
    [Google Scholar]
  34. Jänich, Anna
    2023 Exploring Automatic Synonym Generation for Lexical Simplification of Swedish Electronic Health Record. Sweden: Linköping University, Department of Health, Medicine and Caring Sciences [Master’s thesis]. https://www.diva-portal.org/smash/get/diva2:1764506/FULLTEXT01.pdf
    [Google Scholar]
  35. Jefford, Michael, and Martin H. N. Tattersall
    2002 “Informing and involving cancer patients in their own care”. The Lancet. Oncology, 3(10): 629–637. 10.1016/S1470‑2045(02)00877‑X
    https://doi.org/10.1016/S1470-2045(02)00877-X [Google Scholar]
  36. Kadam, Suvarna, and Vinay Vaidya
    2020 “Review and analysis of zero, one and few shot learning approaches”. InAdvances in Intelligent Systems and Computing, 100–112. Cham: Springer International Publishing.
    [Google Scholar]
  37. Kickbusch, Ilona, Jürgen M. Pelikan, Franklin Apfel, and Agis D. Tsouros
    (eds.) 2013Health literacy. The solid facts. [Informe]. Copenhaguen (Dinamarca): World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/128703/e96854.pdf
    [Google Scholar]
  38. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J.
    2020 “BioBERT: a pre-trained biomedical language representation model for biomedical text mining”. Bioinformatics, 36(4), 1234–1240. 10.1093/bioinformatics/btz682
    https://doi.org/10.1093/bioinformatics/btz682 [Google Scholar]
  39. Lew, Robert
    . “ChatGPT as a COBUILD lexicographer” 2023Humanities and Social Sciences Communications, 101: 704. 10.1057/s41599‑023‑02119‑6
    https://doi.org/10.1057/s41599-023-02119-6 [Google Scholar]
  40. Linares, Oscar, David T. Daly, and Gertrude A. Daly
    2017Plain English for doctors and other medical scientists. New York: Oxford University Press.
    [Google Scholar]
  41. Lommel, Arle
    2023 “Generative AI makes terminology management more critical”. Paper presented atEAFT Terminology Summit, Barcelona, November 17, 2023.
    [Google Scholar]
  42. Łukasik, Marek
    2023 “Corpus linguistics and generative AI tools in term extraction: a case of Kashubian — a low-resource language”. Applied Linguistics Papers, 231: 34–45. 10.32612/uw.25449354.2023.4.pp.34‑45
    https://doi.org/10.32612/uw.25449354.2023.4.pp.34-45 [Google Scholar]
  43. Lyu, Qing, Josh Tan, Michael E. Zapadka, Janardhana Ponnatapura, Chuang Niu, Kyle J. Myers, Ge Wang, and Christopher T. Whitlow
    2023 “Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential”. Vis Comput Ind Biomed Art, 6(1): 9. 10.1186/s42492‑023‑00136‑5
    https://doi.org/10.1186/s42492-023-00136-5 [Google Scholar]
  44. Marrero, Yusney
    2016 SE-Term: sistema de extracción de términos híbrido independiente del dominio [SE-Term: domain-independent hybrid term extraction system]. Alicante, Spain: Universidad de Alicante. [Doctoral dissertation]. hdl.handle.net/10045/53836
  45. McKean, Erin, and Will Fitzgerald
    2023 “The ROI of AI in Lexicography”. InProceedings of the 16th Conference of the Asian Association for Lexicography: Lexicography, Artificial Intelligence, and Dictionary Users, 10–20. Seoul: Yonsei University.
    [Google Scholar]
  46. Montolío, Estrella, and Mario Tascón
    2020El derecho a entender. La comunicación clara, la mejor defensa de la ciudadanía [The right to understand. Clear communication, the best defense of citizenship]. Prodigioso Volcán, Catarata.
    [Google Scholar]
  47. Muegge, Uwe
    2023Terminology extraction for translation and interpreting made easy. ISBN: 979-8-9893043-1-8.
    [Google Scholar]
  48. Nazar, Rogelio
    2016 “Distributional analysis applied to terminology extraction: example in the domain of psychiatry in Spanish”. Terminology: International Journal of Theoretical and Applied Issues in Specialized Communication, 22(2): 142–170.
    [Google Scholar]
  49. Nazar, Rogelio, and Maria Teresa Cabré
    2012 “Supervised Learning Algorithms Applied to Terminology Extraction”. InProceedings of the 10th Terminology and Knowledge Engineering Conference: New Frontiers in the Constructive Symbiosis of Terminology and Knowledge Engineering, TKE 2012, 209–217.
    [Google Scholar]
  50. Nazar, Rogelio, Jorge Vivaldi, and Leo Wanner
    2012 “Automatic Taxonomy Extraction for Specialized Domains Using Distributional Semantics”. Terminology: International Journal of Theoretical and Applied Issues in Specialized Communication, 18(2): 188–225. 10.1075/term.18.2.03naz
    https://doi.org/10.1075/term.18.2.03naz [Google Scholar]
  51. OpenAI. ChatGPT. San Francisco: OpenAI
    OpenAI. ChatGPT. San Francisco: OpenAI 2024https://openai.com
  52. OpenAI and Jessica Shieh
    OpenAI and Jessica Shieh (2023) Best practices for prompt engineering with OpenAI. https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
    [Google Scholar]
  53. Paetzold, Gustavo, and Lucia Specia
    2017 “Lexical Simplification with Neural Ranking”. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computa- tional Linguistics, 21: 34–40. Valencia, Spain: Association for Computational Linguistics. https://aclanthology.org/E17-2006. 10.18653/v1/E17‑2006
    https://doi.org/10.18653/v1/E17-2006 [Google Scholar]
  54. Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
    2018 “Deep contextualized word representations”. InProceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 10.18653/v1/N18‑1202
    https://doi.org/10.18653/v1/N18-1202 [Google Scholar]
  55. Qiang, Jipeng, Yun Li, Yi Zhu, Yun-Hao Yuan, and Xindong Wu
    2021 “LSBert: A Simple Framework for Lexical Simplification”. IEEE/ACM Transactions on Audio, Speech and Language Processing, 291: 3064–3076. 10.1109/TASLP.2021.3111589
    https://doi.org/10.1109/TASLP.2021.3111589 [Google Scholar]
  56. Real Academia Nacional de Medicina Española
    Real Academia Nacional de Medicina Española (2021) Diccionario de términos médicos. https://dtme.ranm.es/index.aspx
    [Google Scholar]
  57. Ribera, Mireia, and Oliver Díaz
    (coords.) 2024ChatGPT y educación universitaria [ChatGPT and university education]. Barcelona: Ediciones Octaedro and Universitat de Barcelona. https://octaedro.com/wp-content/uploads/2024/01/9788410054011.pdf
    [Google Scholar]
  58. Rigouts Terryn, Ayla, Véronique Hoste, and Els Lefever
    2021 “HAMLET: Hybrid Adaptable Machine Learning Approach to Extract Terminology.” Terminology: International Journal of Theoretical and Applied Issues in Specialized Communication, 27(2): 254–293. 10.1075/term.20017.rig
    https://doi.org/10.1075/term.20017.rig [Google Scholar]
  59. San Martín, Antonio
    2024 “What Generative Artificial Intelligence Means for Terminological Definitions”. 10.48550/arXiv.2402.16139
    https://doi.org/10.48550/arXiv.2402.16139 [Google Scholar]
  60. Siu, Sai Cheong
    2023 “ChatGPT and GPT-4 for Professional Translators: Exploring the Potential of Large Language Models in Translation”. Computational Linguistics & Natural Language Processing eJournal, 5(24). 10.2139/ssrn.4448091
    https://doi.org/10.2139/ssrn.4448091 [Google Scholar]
  61. Suñer, Rosa, and Manel Santiñà
    2014 “Alfabetització per a la salut: definicions, conceptes i la seva relació amb la salut” [Health literacy: definitions, concepts and their relation to health]. InAlfabetització per a la salut: estàndards i recomanacions per als professionals de la salut [Health literacy: standards and recommendations for health care professionals], ed. bySuñer, Rosa, and Manel Santiñà, 13–26. Girona, Spain: Documenta Universitaria.
    [Google Scholar]
  62. Tercedor, Maribel
    dir. (nd). VARIMED database. Universidad de Granada. https://varimed.ugr.es
    [Google Scholar]
  63. TERMCAT. Centre de Terminologia
    TERMCAT. Centre de Terminologia (2010) El Diccionari terminològic [Terminological Dictionary]. Eumo Editorial / TERMCAT, Centre de Terminologia. ISBN978-84-9766-394-6.
    [Google Scholar]
  64. Tran, Hanh Thi Hong, Matej Martinc, Jaya Caporusso, Antoine Doucet, and Senja Pollak
    2023 “The Recent Advances in Automatic Term Extraction: A Survey.” arXiv. https://arxiv.org/abs/2301.06767
    [Google Scholar]
  65. Vidal-Sabanés, Laia
    2021 “La Terminologia en els textos mèdics per a pacients: el cas d’una comunitat virtual de dones amb càncer de mama” [Terminology in medical texts for patients: the case of a virtual community of women with breast cancer]. Barcelona, Spaon: Universitat Pompeu Fabra. [Doctoral dissertation] https://www.tdx.cat/handle/10803/672627
  66. Viñuales-Ferreiro, Susana, and Pistola, Sara
    2022 “Lenguaje claro y variación terminológica en textos de la Administración” [Clear language and terminology variation in government texts]. InLenguaje claro y tecnología en la Administración [Clear language and technology in the Administration], ed. byDa Cunha, Iria, 117–135. Granada, Spain: Comares. ISBN978-84-1369-444-3.
    [Google Scholar]
  67. Vivaldi, Jorge
    2002 “Extracción de candidatos a término mediante la combinación de estrategias heterogéneas”. Procesamiento del lenguaje natural, 281: 112.
    [Google Scholar]
  68. Wang, Yaqing, Quanming Yao, James T. Kwok, and Lionel M. Ni
    2020 “Generalizing from a Few Examples: A Survey on Few-Shot Learning”. ACM Computing Surveys53 (3): 1–34. 10.1145/3386252
    https://doi.org/10.1145/3386252 [Google Scholar]
  69. World Health Organizacion
    World Health Organizacion 2021 (online) Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
    [Google Scholar]
/content/journals/10.1075/term.00083.vid
Loading
/content/journals/10.1075/term.00083.vid
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error