1887
image of Language industry views on the profile of the post-editor
USD
Buy:$35.00 + Taxes

Abstract

Abstract

The more language service companies (LSCs) include machine translation post-editing (MTPE) in their workflows, the more important it is to know how the PE task is performed, who the post-editors are, and what skills they should have. This research is designed to address such questions. It aims to deepen our knowledge of current practices to later create new training content and adapt existing training methodologies to different types of audiences. Based on the results of a survey of LSCs and other companies who currently use MTPE, we present a picture of evolving practices in the contemporary European MTPE market, and opinions held about this emerging . Our research finds that a high level of expertise in MTPE may not necessarily be indicative of the industry, and that the post-editor of MT has a multi- and transdisciplinary profile.

Loading

Article metrics loading...

/content/journals/10.1075/ts.19010.cid
2020-01-14
2020-08-11
Loading full text...

Full text loading...

References

  1. BS ISO (British Standards Document)
    BS ISO (British Standards Document) 2015Translation Services. Requirements for Translation Services. BS EN ISO 17100:2015+A1:2017, doi:  10.3403/30246895U
    https://doi.org/10.3403/30246895U [Google Scholar]
  2. BS ISO (British Standards Document)
    BS ISO (British Standards Document) 2017Translation services. Post-editing of machine translation output. Requirements. BS ISO 18587:2017, doi:  10.3403/30279909U
    https://doi.org/10.3403/30279909U [Google Scholar]
  3. Absolon, Jakub
    . n.d.English – Slovak MTPE Course. Nitra: ASAP-translation.com. Accessed14 July 2019, mtposteditors.com/tests/test_EN_SK_01.html
    [Google Scholar]
  4. 2018The Need for Competency-based Selection and Training of Post-editors. Nitra: ASAP-translation.com.
    [Google Scholar]
  5. Allen, Jeffrey
    2003 “Post-Editing.” InComputers and Translation: A Translator’s Guide, edited byHarold Somers. Benjamins Translation Library, 35. Amsterdam: John Benjamins. doi:  10.1075/btl.35
    https://doi.org/10.1075/btl.35 [Google Scholar]
  6. American Translators Association
    American Translators Association 2018ATA Position Paper on Machine Translation. Accessed20 July 2019, xl8.link/ATA2018
    [Google Scholar]
  7. Austermühl, Frank
    2013 “Future (and Not-So-Future) Trends in the Teaching of Translation Technology”. Tradumàtica: Tecnologies de la Traducció, 11: 326–337. doi:  10.5565/rev/tradumatica.46
    https://doi.org/10.5565/rev/tradumatica.46 [Google Scholar]
  8. Bernth, Arendse, and Claudia Gdaniec
    2001 “MTranslatability” Machine Translation. 16: 175–218. doi:  10.1023/A:1019867030786
    https://doi.org/10.1023/A:1019867030786 [Google Scholar]
  9. Blagodarna, Olena
    2018 Enhancement of Post-Editing Performance: Introducing Machine Translation Post-Editing in Translator Training. PhD dissertation, Universitat Autònoma de Barcelona.
  10. Blanco Claraco, José Luis
    2012 “Calculadoras de significancia estadística en resultados de encuestas [Calculators of statistical significance in survey results].” InCiencia explicada. Accessed19 July 2019, xl8.link/significance
    [Google Scholar]
  11. Bundgaard, Kristine, and Tina Paulsen Christensen
    2019 “Is the Concordance Feature the New Black? A Workplace Study of Translators’ Interaction with Translation Resources while Post-Editing TM and MT Matches.” InThe Journal of Specialised Translation. 31: 14–37. Accessed14 July 2019, www.jostrans.org/issue31/art_bundgaard.php
    [Google Scholar]
  12. Calvo Encinas, Elisa
    2009 Análisis curricular de los estudios de traducción e interpretación en España: experiencia curricular del estudiantado [Analysis of the Curricula of Translation and Interpreting Studies in Spain: Curricular Experience of the Students]. PhD Thesis, Universidad de Granada.
  13. Castilho, Sheila, Joss Moorkens, Federico Gaspari, Iacer Calixto, John Tinsley, and Andy Way
    2017 “Is Neural Machine Translation the New State of the Art?” The Prague Bulletin of Mathematical Linguistics. 108 (1): 109–120. doi:  10.1515/pralin‑2017‑0013
    https://doi.org/10.1515/pralin-2017-0013 [Google Scholar]
  14. Cid-Leal, Pilar, María-Carmen Espín-García, and Marisa Presas
    2019 “Traducción automática y posedición: perfiles y competencias en los programas de formación de traductores [Machine translation and post-editing: profiles and competencies in translator training programmes]” InMonTI: Because Something should Change: Present and Future Training of Translators and Interpreters. 11: 187–214.
    [Google Scholar]
  15. Common Sense Advisory
    Common Sense Advisory 2012The Top 100 Language Service Providers. Accessed20 June 2019, xl8.link/CSA2012
    [Google Scholar]
  16. Daems, Joke, Michael Carl, Sonia Vandepitte, Robert Hartsuiker, and Lieve Macken
    2016 “The Effectiveness of Consulting External Resources During Translation and Post-Editing of General Text Types.” New Frontiers in Translation Studies, 111–133. doi:  10.1007/978‑3‑319‑20358‑4_6
    https://doi.org/10.1007/978-3-319-20358-4_6 [Google Scholar]
  17. DigiLing
    DigiLingn.d.Post-Editing Machine Translation. Online training course. Accessed14 July 2019, https://learn.digiling.eu/
    [Google Scholar]
  18. do Carmo, Félix
    2017 Post-editing: A Theoretical and Practical Challenge for Translation Studies and Machine Learning. PhD dissertation, Universidad do Porto.
  19. Doherty, Stephen, and Dorothy Kenny
    2014 “The Design and Evaluation of a Statistical Machine Translation Syllabus for Translation Students.” The Interpreter and Translator Trainer8 (2): 295–315. doi:  10.1080/1750399X.2014.937571
    https://doi.org/10.1080/1750399X.2014.937571 [Google Scholar]
  20. Doherty, Stephen, and Federico Gaspari
    2013 “Effective Post-Editing in Human and Machine Translation Workflows: Critical Knowledge and Techniques.” Presentation given at theQTLaunchPad Post-Editing Webinar. Accessed20 June 2019, xl8.link/QT21_2013
    [Google Scholar]
  21. Egdom, Gys Van, Lucas Nunes Vieira, and Jakub Absolon
    2018 “Towards Testing Post-Editing Performance: A Futureproof Diagnostic Tool.” Tradumàtica. Tecnologies de la Traducció, 16: 114–124. doi:  10.5565/rev/tradumatica.211
    https://doi.org/10.5565/rev/tradumatica.211 [Google Scholar]
  22. EMT Board
    EMT Board 2017Master Européen en Traduction (EMT) Expliqué. Référentiel des Compétences EMT. [European Master’s in Translation – EMT Competence Framework]. Accessed6 June 2019, https://ec.europa.eu/info/sites/info/files/emt_competence_fwk_2017_fr_web.pdf
    [Google Scholar]
  23. EUATC, GALA, FIT, elia, EMT and LIND-Web
    EUATC, GALA, FIT, elia, EMT and LIND-Web 20182018 Language Industry Survey – Expectations and Concerns of the European Language Industry. Accessed9 June 2019, https://aticom.de/wp-content/uploads/2018/08/2018_Language_Industry_Survey_Report.pdf
    [Google Scholar]
  24. EUATC, GALA, FIT, elia, EMT and LIND-Web
    EUATC, GALA, FIT, elia, EMT and LIND-Web 20192019 Language Industry Survey – Expectations and Concerns of the European Language Industry. Accessed9 June 2019, https://ec.europa.eu/info/sites/info/files/2019_language_industry_survey_report.pdf
    [Google Scholar]
  25. Forcada, Mikel L.
    2017 “Making Sense of Neural Machine Translation.” Translation Spaces6 (2): 291–309. doi:  10.1075/ts.6.2.06for
    https://doi.org/10.1075/ts.6.2.06for [Google Scholar]
  26. Gaspari, Federico, Hala Almaghout, and Stephen Doherty
    2015 “A Survey of Machine Translation Competences: Insights for Translation Technology Educators and Practitioners.” Perspectives 23 Studies in Translatology23 (3): 333–358. doi:  10.1080/0907676X.2014.979842
    https://doi.org/10.1080/0907676X.2014.979842 [Google Scholar]
  27. Gile, Daniel
    2006 “Do Respondents to Surveys Tell the Truth?”. InEuropean Society for Translation Studies. Accessed15 July 2019, xl8.link/EST_Gile
    [Google Scholar]
  28. Göpferich, Susanne
    2013 “Translation Competence. Explaining Development and Stagnation from a Dynamic Systems Perspective.” Target25 (1): 63–78. doi:  10.1075/target.25.1.06goe
    https://doi.org/10.1075/target.25.1.06goe [Google Scholar]
  29. Green, Spence, Jeffrey Heer, and Christopher D. Manning
    2013 “The Efficacy of Human Post-Editing for Language Translation.” InACM Factors in Computing Systems, Paris, France. doi:  10.1145/2470654.2470718
    https://doi.org/10.1145/2470654.2470718 [Google Scholar]
  30. Guerberof, Ana
    2013 “What do Professional Translators Think About Post-Editing?” The Journal of Specialised Translation. 19: 75–95. Accessed20 November 2018, https://www.jostrans.org/issue19/art_guerberof.pdf
    [Google Scholar]
  31. Guerberof, Ana, and Joss Moorkens
    2019 “Machine Translation and Post-Editing Training as Part of a Master’s Programme.” The Journal of Specialised Translation. 31: 217–238. Accessed14 July 2019, xl8.link/31guerberof
    [Google Scholar]
  32. Guerberof, Ana, Heidi Depraetere, and Sharon O’Brien
    2012 “What We Know and What We Would Like to Know About Post-Editing.” Tradumàtica: tecnologies de la traducció, (10): 211–218. doi:  10.5565/rev/tradumatica.28
    https://doi.org/10.5565/rev/tradumatica.28 [Google Scholar]
  33. Guerrero, Lucía
    2017LSP Perspective: Applying the Human Touch to MT, Qualitative Feedback in MT evaluation (Part 1). Accessed9 June 2019, xl8.link/CPSL
    [Google Scholar]
  34. Henderson, Stephen
    2016The Top 100 Language Service Providers. 2016. Common Sense Advisory Research. Accessed20 June 2019, xl8.link/CSA2016
    [Google Scholar]
  35. Hyperion Ltd.
    Hyperion Ltd.n.d.EU Associations. Hyperion Ltd. Accessed30 November 2018, xl8.link/hyperion
    [Google Scholar]
  36. Jia, Yanfang, Michael Carl, and Xiangling Wang
    2019 “How does the Post-Editing of Neural Machine Translation Compare with From-Scratch Translation? A Product and Process Study.” The Journal of Specialised Translation. 31: 60–86. Accessed30 November 2018, www.jostrans.org/issue31/art_jia.php
    [Google Scholar]
  37. Joscelyne, Andrew, and Colin Brace
    2010Postediting in Practice. A TAUS Report. Accessed20 June 2019, xl8.link/TAUS2010
    [Google Scholar]
  38. Juarros, Victoria Marín
    2017 La formación de poseditores mediante el uso de las TIC: estado de la cuestión y una propuesta de estrategia de formación [Post-editors training via the use of ICT: state of the art and proposal for a training strategy]. Universitat de Vic, Universitat Central de Catalunya and Universidad San Jorge. Accessed22 November 2019, xl8.link/juarros2017.
  39. KantanMT
    KantanMT. n.d.Training MT Post-Editors. Accessed20 June 2019, xl8.link/KMT
    [Google Scholar]
  40. Koponen, Maarit
    2015 “How to Teach Machine Translation Post-Editing? Experiences from a Post-Editing Course.” Proceedings of 4th Workshop on Post-Editing Technology and Practice. Accessed20 June 2019, xl8.link/Koponen2015
    [Google Scholar]
  41. 2018 “Learning to Post-Edit: An Analysis of Post-Editing Quality and Processes of Translation Students.” International Association for Translation and Intercultural Studies (IATIS) 6th International Conference. doi:  10.13140/RG.2.2.24675.04648
    https://doi.org/10.13140/RG.2.2.24675.04648 [Google Scholar]
  42. Krings, Hans P., and Geoffrey S. Koby
    (eds) 2001Repairing Texts: Empirical Investigations of Machine Translation Post-Editing Processes. Kent, Ohio: The Kent State University Press.
    [Google Scholar]
  43. Marheinecke, Katrin
    2016 “Post-editing Machine Translation. What does it take?” Translating Europe Forum 2016. Accessed20 June 2019, xl8.link/marheinecke
    [Google Scholar]
  44. Mesa-Lao, Bartolomé
    2014 “Speech-Enabled Computer-Aided Translation: A Satisfaction Survey with Post-Editor Trainees.” Proceedings of the EACL 2014 Workshop on Humans and Computer-Assisted Translation. doi:  10.3115/v1/W14‑0315
    https://doi.org/10.3115/v1/W14-0315 [Google Scholar]
  45. Moorkens, Joss, and Sharon O’Brien
    2017 “Assessing User Interface Needs of Post-Editors of Machine Translation.” InHuman Issues in Translation Technology, edited byDorothy Kenny, 109–130. London and New York: Routledge. doi:  10.4324/9781315648934
    https://doi.org/10.4324/9781315648934 [Google Scholar]
  46. Nitzke, Jean, Silvia Hansen-Schirra, and Carmen Canfora
    2019 “Risk Management and Post-Editing Competence.” The Journal of Specialised Translation. 31: 239–259. Accessed20 June 2019, xl8.link/Nitzke
    [Google Scholar]
  47. O’Brien, Sharon
    2002 “Teaching Post-editing: A Proposal for Course Content.” InProceedings of the 6th European Association for Machine Translation (EAMT) Workshop, Teaching Machine Translation, 99–106. Accessed20 June 2019, xl8.link/OBrien2002
    [Google Scholar]
  48. O’Brien, Sharon, Laura Winther Balling, Michael Carl, Michel Simard, and Lucia Specia
    (eds) 2014Post-Editing of Machine Translation: Processes and Applications. Cambridge Scholars Publishing: United Kingdom.
    [Google Scholar]
  49. Oncins de Frutos, Margarita
    2008 “NTP 283: Encuestas: metodología para su utilización [Surveys: Methodology for Implementation].” Accessed20 June 2019, xl8.link/surveys
  50. PACTE
    PACTE 2014 “First Results of PACTE Group’s Experimental Research on Translation Competence Acquisition: The Acquisition of Declarative Knowledge of Translation.” InMonTI Special Issue. Minding translation, edited byR. M. Martín, 85–115. doi:  10.6035/MonTI.2014.ne1.2
    https://doi.org/10.6035/MonTI.2014.ne1.2 [Google Scholar]
  51. Plaza Lara, Cristina
    2019 “SWOT Analysis of the Inclusion of Machine Translation and Post-Editing in the Master’s Degrees Offered in the EMT Network.” The Journal of Specialised Translation. 31: 260–280. Accessed30 November 2018, www.jostrans.org/issue31/art_plaza.php
    [Google Scholar]
  52. Popović, Maja, Arle Lommel, Aljoscha Burchardt, Eleftherios Avramidis, and Hans Uszkoreit
    2014 “Relations between Different Types of Post-Editing Operations, Cognitive Effort and Temporal Effort.” InProceedings of the 17th Conference of the European Association for Machine Translation (EAMT14), 191–198. Accessed20 June 2019, xl8.link/Popovic
    [Google Scholar]
  53. Pym, Anthony
    2009Translator training. Tinet. Accessed20 June 2019, xl8.link/Pym2009
    [Google Scholar]
  54. 2011 “What Technology Does to Translating.” The International Journal for Translation and Interpreting Research. Accessed20 June 2019, xl8.link/Pym2011
    [Google Scholar]
  55. 2013 “Translation Skill-Sets in a Machine-Translation Age.” Meta58 (3): 487. doi:  10.7202/1025047ar
    https://doi.org/10.7202/1025047ar [Google Scholar]
  56. Rico Pérez, Celia, and Enrique Torrejón
    2012 “Skills and Profile of the New Role of the Translator as MT Post-editor.” Tradumàtica: tecnologies de la traducció, 166–178. doi:  10.5565/rev/tradumatica.18
    https://doi.org/10.5565/rev/tradumatica.18 [Google Scholar]
  57. Rico Pérez, Celia, and Pedro L. Díez Orzas
    2013a “EDI-TA: Post-Editing Methodology for Machine Translation.” Multilingualweb-LT Deliverable 4.1.4. Annex I. Accessed20 June 2019, xl8.link/Rico2013a
    [Google Scholar]
  58. 2013b “Training Methodology for Machine Translation Post-editing.” Multilingualweb-LT Deliverable 4.1.4. Annex II. Accessed15 July 2019, xl8.link/Rico2013b
    [Google Scholar]
  59. Rossetti, Alessandra, and Federico Gaspari
    2017 “Modelling the Analysis of Translation Memory Use and Post-Editing of Raw Machine Translation Output: A Pilot Study of Trainee Translators’ Perceptions.” InEmpirical Modelling of Translation and Interpreting, 41–67. Berlin: Language Science Press. doi: 10.5281/zenodo.1090952
    https://doi.org/10.5281/zenodo.1090952 [Google Scholar]
  60. Sakamoto, Akiko
    2019 “Why Do Many Translators Resist Post-Editing? A Sociological Analysis Using Bourdieu’s Concepts Description.” The Journal of Specialised Translation. 31: 201–216. Accessed20 June 2019, xl8.link/Sakamoto
    [Google Scholar]
  61. Sánchez-Gijón, Pilar
    2016 “Post-Editing: Towards a Competency-Based Definition of the Profile and a Multidimensional Description of the Phenomenon.” InSendebar27: 151–162. Universidad de Granada. Accessed30 November 2018, revistaseug.ugr.es/index.php/sendebar/article/view/4016
    [Google Scholar]
  62. SDL
    SDL. n.d.Formation. Post-édition de traduction automatique [Training. Post-editing of Machine Translation]. Online training course. Accessed145 July 2019, https://www.sdltrados.com/fr/learning/training/post-editing-machine-translation.html
    [Google Scholar]
  63. SDL
    SDL 2016SDL Research Study 2016: Translation Technology Insights. 23. Accessed30 November 2018, https://www.sdl.com/download/tti16-productivity/109572/
    [Google Scholar]
  64. Sycz-Opoń, Joanna, and Ksenia Gałuskina
    2017 “Machine Translation in the Hands of Trainee Translators – An Empirical Study.” Studies in Logic, Grammar and Rhetoric49 (1): 195–212. doi:  10.1515/slgr‑2017‑0012
    https://doi.org/10.1515/slgr-2017-0012 [Google Scholar]
  65. Tatsumi, Midori
    2010 Post-Editing Machine Translated Text in A Commercial Setting: Observation and Statistical Analysis. PhD Thesis. Dublin City University. Accessed14 July 2019, doras.dcu.ie/16062/
  66. Temizöz, Özlem
    2016 “Postediting Machine Translation Output: Subject-Matter Experts Versus Professional Translators.” Perspectives24 (4): 646–665. doi:  10.1080/0907676X.2015.1119862
    https://doi.org/10.1080/0907676X.2015.1119862 [Google Scholar]
  67. Torrejón, Enrique, and Celia Rico
    2002 “Controlled Translation: A New Teaching Scenario Tailor-Made for the Translation Industry.” Proceedings of 6th EAMT Workshop Teaching Machine Translation, 107–116. Manchester, UK. Accessed30 November 2018, mt-archive.info/EAMT-2002-Torrejon.pdf
    [Google Scholar]
  68. Tradumàtica Research Group
    Tradumàtica Research Group. n.d.POST-IT: Equipo de investigación [POST-IT: Investigating Team]. Accessed20 June 2019, xl8.link/post-it
    [Google Scholar]
  69. van der Meer, Anne-Maj
    2015Post-editing Course. Online training course. Accessed14 July 2019, https://www.taus.net/academy/taus-post-editing-course
    [Google Scholar]
  70. van deer Meer, Jaap, and Achim Ruopp
    2014Machine Translation Market Report 2014. Accessed20 June 2019, xl8.link/TAUS-MT2014
    [Google Scholar]
  71. Van Ess-Dykema, Carol, Jocelyn Phillips, Florence Reeder, and Laurie Gerber
    2010 “Paralinguist Assessment Decision Factors for Machine Translation Output: A Case Study.” InAMTA 2010 – 9th Conference of the Association for Machine Translation in the Americas. Accessed14 July 2019, mt-archive.info/AMTA-2010-VanEss-Dykema.pdf
    [Google Scholar]
  72. Vasconcellos, Muriel
    1986 “Post-Editing On-Screen: Machine Translation from Spanish into English.” InProceedings of Translating and The Computer 8, edited byCatriona Picken. Accessed20 June 2019, xl8.link/1986
    [Google Scholar]
  73. Vehovar, Vasja, Katja Lozar Manfreda, Jernej Berzelak, Gregor Čehovin, and Katja Zrim
    2019WebSM. Web Survey Methodology. Faculty of Social Sciences, University of Ljubljana. Accessed20 June 2019, xl8.link/web
    [Google Scholar]
  74. Vieira, Lucas Nunes, and Elisa Alonso
    2018The Use of Machine Translation in Human Translation Workflows: Practices, Perceptions and Knowledge Exchange. University of Bristol and Universidad Pablo de Olavide. Accessed30 November 2018, https://www.researchgate.net/publication/325114193
    [Google Scholar]
  75. Vintar, Špela, Ondřej Matuška, Jure Škerl, Petra Bago, Dragos Ciobanu, Vaclav Cvrček, Oliver Čulo, Miloš Jakubiček, Nives Mikelić Preradović, Jean Nitzke, Alina Secara, Zdenek Žabokrtsky
    2017 “Labour Market Needs Survey and the DigiLing Model Curriculum.” InProject DigiLing: TransEuropean e-Learning Hub for Digital Linguistics. Accessed20 June 2019, xl8.link/DigiLing
    [Google Scholar]
  76. Zaretskaya, Ana
    2017 “Machine Translation Post-Editing at TransPerfect – the ‘Human’ Side of the Process.” Tradumàtica. Tecnologies de la Traducció (15): 116. doi:  10.5565/rev/tradumatica.201
    https://doi.org/10.5565/rev/tradumatica.201 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1075/ts.19010.cid
Loading
/content/journals/10.1075/ts.19010.cid
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: skill set; MTPE; machine translation; language industry; quality evaluation; post-editing
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error