Volume 12, Issue 2
  • ISSN 2211-3711
  • E-ISSN: 2211-372X
Buy:$35.00 + Taxes



This article conducts a meta-analysis of existing research to theorize how machine translation (MT) may help resolve underlying contradictions in the development sector that preclude the UN’s 10th Sustainable Development Goal: to reduce inequality within and among countries. Non-governmental organizations (NGOs) frequently work in dominant languages and neglect marginalized languages, reinforcing power imbalances between the Global North and Global South in development planning. MT between marginalized languages may improve collaboration between local communities to redress shared disadvantages. As an example, the article hypothesizes a sustainable, “low-tech” MT system pivoting through Spanish to translate between three Mayan languages in Guatemala: K’iche’, Q’eqchi’, and Mam. First, the article theorizes three key dimensions comprising the overall sustainability of low-resource MT in development: quality, social, and environmental. It then evaluates the sustainability of various MT architectures. Finally, it reaffirms the ability for indirect translation (classic pivot-based MT) to facilitate MT between low-resource languages.


Article metrics loading...

Loading full text...

Full text loading...


  1. Aissen, Judith, Nora C. England, and Roberto Zavala Maldonado
    2017 “Introduction.” InThe Mayan Languages, edited byJudith Aissen, Nora C. England, and Roberto Zavala Maldonado, 1–15. Routledge Language Family Series. London and New York: Routledge. 10.4324/9781315192345‑1
    https://doi.org/10.4324/9781315192345-1 [Google Scholar]
  2. Alvstad, Cecilia
    2017 “Arguing for Indirect Translations in Twenty-First-Century Scandinavia.” Translation Studies10 (2): 150–65. 10.1080/14781700.2017.1286254
    https://doi.org/10.1080/14781700.2017.1286254 [Google Scholar]
  3. Assis Rosa, Alexandra, Hanna Pięta, and Rita Bueno Maia
    2017 “Theoretical, Methodological and Terminological Issues Regarding Indirect Translation: An Overview.” Translation Studies10 (2): 113–32. 10.1080/14781700.2017.1285247
    https://doi.org/10.1080/14781700.2017.1285247 [Google Scholar]
  4. Banerjee, Subhabrata Bobby
    2003 “Who Sustains Whose Development? Sustainable Development and the Reinvention of Nature.” Organization Studies24 (1): 143–80. 10.1177/0170840603024001341
    https://doi.org/10.1177/0170840603024001341 [Google Scholar]
  5. Bapna, Ankur, Isaac Caswell, Julia Kreutzer, Orhan Firat, Daan van Esch, Aditya Siddhant, Mengmeng Niu,
    2022 “Building Machine Translation Systems for the Next Thousand Languages.” arXiv:2205.03983. Google. CitetononCRdoi:10.48550/arXiv.2205.03983
    https://doi.org/Cite to nonCR doi: 10.48550/arXiv.2205.03983 [Google Scholar]
  6. Bjørn, Anders, Shannon M. Lloyd, Matthew Brander, and H. Damon Matthews
    2022 “Renewable Energy Certificates Threaten the Integrity of Corporate Science-Based Targets.” Nature Climate Change12 (6): 539–46. 10.1038/s41558‑022‑01379‑5
    https://doi.org/10.1038/s41558-022-01379-5 [Google Scholar]
  7. Bojar, Ondrˇej, and Alesˇ Tamchyna
    2011 “Improving Translation Model by Monolingual Data.” InProceedings of the Sixth Workshop on Statistical Machine Translation, 71.
    [Google Scholar]
  8. Bollmann, Marcel
    2019 “A Large-Scale Comparison of Historical Text Normalization Systems.” InProceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 3885–98. Minneapolis: Association for Computational Linguistics. 10.18653/v1/N19‑1389
    https://doi.org/10.18653/v1/N19-1389 [Google Scholar]
  9. Bowker, Lynne, and Jairo Buitrago Ciro
    2019Machine Translation and Global Research: Towards improved machine translation literacy in the scholarly community. Bingley: Emerald Publishing.
    [Google Scholar]
  10. Brander, Matthew, Michael Gillenwater, and Francisco Ascui
    2018 “Creative Accounting: A Critical Perspective on the Market-Based Method for Reporting Purchased Electricity (Scope 2) Emissions.” Energy Policy1121 (January): 29–33. 10.1016/j.enpol.2017.09.051
    https://doi.org/10.1016/j.enpol.2017.09.051 [Google Scholar]
  11. Canfora, Carmen, and Angelika Ottmann
    2020 “Risks in Neural Machine Translation.” Translation Spaces9 (1): 58–77. 10.1075/ts.00021.can
    https://doi.org/10.1075/ts.00021.can [Google Scholar]
  12. Castilho, Sheila, Joss Moorkens, Federico Gaspari, Iacer Calixto, John Tinsley, and Andy Way
    2017 “Is Neural Machine Translation the New State of the Art?” The Prague Bulletin of Mathematical Linguistics108 (1): 109–20. 10.1515/pralin‑2017‑0013
    https://doi.org/10.1515/pralin-2017-0013 [Google Scholar]
  13. Cheng, Yong, Yang Liu, Qian Yang, Maosong Sun, and Wei Xu
    2017 “Neural Machine Translation with Pivot Languages.” ArXiv.Org, February. CitetononCRdoi:10.48550/arXiv.1611.04928
    https://doi.org/Cite to nonCR doi: 10.48550/arXiv.1611.04928 [Google Scholar]
  14. Chiang, David
    2005 “A Hierarchical Phrase-Based Model for Statistical Machine Translation.” InProceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 263–70. Ann Arbor, Michigan: Association for Computational Linguistics. 10.3115/1219840.1219873
    https://doi.org/10.3115/1219840.1219873 [Google Scholar]
  15. Chiapello, Eve, and Anita Engels
    2021 “The Fabrication of Environmental Intangibles as a Questionable Response to Environmental Problems.” Journal of Cultural Economy14 (5): 517–32. 10.1080/17530350.2021.1927149
    https://doi.org/10.1080/17530350.2021.1927149 [Google Scholar]
  16. Chipidza, Wallace, and Dorothy Leidner
    2019 “A Review of the ICT-Enabled Development Literature: Towards a Power Parity Theory of ICT4D.” The Journal of Strategic Information Systems, SI: Review issue, 28 (2): 145–74. 10.1016/j.jsis.2019.01.002
    https://doi.org/10.1016/j.jsis.2019.01.002 [Google Scholar]
  17. Conneau, Alexis, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov
    2020 “Unsupervised Cross-Lingual Representation Learning at Scale.” InProceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 8440–51. Online: Association for Computational Linguistics. 10.18653/v1/2020.acl‑main.747
    https://doi.org/10.18653/v1/2020.acl-main.747 [Google Scholar]
  18. Cronin, Michael
    2017Eco-Translation: Translation and Ecology in the Age of the Anthropocene. London: Routledge. 10.4324/9781315689357
    https://doi.org/10.4324/9781315689357 [Google Scholar]
  19. Costa-jussà, Marta R., Mireia Farrús, José B. Mariño Acebal, and José A. Rodriguez Fonollosa
    2012 “Study and Comparison of Rule-Based and Statistical Catalan-Spanish Machine Translation Systems.” Computing and Informatics31 (2).
    [Google Scholar]
  20. Costa-jussà, Marta R., James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi,
    2022 “No Language Left Behind: Scaling Human-Centered Machine Translation.” arXiv. CitetononCRdoi:10.48550/arXiv.2207.04672
    https://doi.org/Cite to nonCR doi: 10.48550/arXiv.2207.04672 [Google Scholar]
  21. Doss Mohan, Krishna, and Jann Skotdal
    2021 “Microsoft Translator: Now Translating 100 Languages and Counting!” Microsoft Research (blog). October 11, 2021. https://www.microsoft.com/en-us/research/blog/microsoft-translator-now-translating-100-languages-and-counting/. Accessed27 January, 2023.
    [Google Scholar]
  22. England, Nora C.
    1998 “Mayan Efforts toward Language Preservation.” InEndangered Languages: Language Loss and Community Response, edited byLenore A. Grenoble and Lindsay J. Whaley, 99–116. Cambridge: Cambridge University Press. 10.1017/CBO9781139166959.005
    https://doi.org/10.1017/CBO9781139166959.005 [Google Scholar]
  23. España Bonet, Cristina, Lluís Màrquez Villodre, Gorka Labaka, Arantza Díaz de Ilarraza Sánchez, and Kepa Sarasola Gabiola
    2011 “Hybrid Machine Translation Guided by a Rule-Based System.” InProceedings of Machine Translation Summit XIII: Papers, 554–61. Xiamen. https://aclanthology.org/2011.mtsummit-papers.63
    [Google Scholar]
  24. Forcada, Mikel L., Mireia Ginestí-Rosell, Jacob Nordfalk, Jim O’Regan, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-Sánchez, and Francis M. Tyers
    2011 “Apertium: A Free/Open-Source Platform for Rule-Based Machine Translation.” Machine Translation25 (2): 127–44. 10.1007/s10590‑011‑9090‑0
    https://doi.org/10.1007/s10590-011-9090-0 [Google Scholar]
  25. Forcada, Mikel L.
    2017 “Making Sense of Neural Machine Translation.” Translation Spaces6 (2): 291–309. 10.1075/ts.6.2.06for
    https://doi.org/10.1075/ts.6.2.06for [Google Scholar]
  26. French, Brigittine M.
    2010Maya Ethnolinguistic Identity: Violence, Cultural Rights, and Modernity in Highland Guatemala. Tucson: University of Arizona Press.
    [Google Scholar]
  27. García Ixmatá, Ajpub’ Pablo
    2010 “Maya Knowledge and Wisdom.” Translated byLaura Martin. Latin American and Caribbean Ethnic Studies5 (2): 219–31. 10.1080/17442221003787142
    https://doi.org/10.1080/17442221003787142 [Google Scholar]
  28. Gasser, Mike
    2006 “Machine Translation and the Future of Indigenous Languages.” InI Congreso Internacional de Las Lenguas y Literaturas Indoamericanas, 201.
    [Google Scholar]
  29. Gillooly, Shauna N.
    2020 “Indigenous Social Movements and Political Institutionalization: A Comparative Case Study.” Politics, Groups, and Identities8 (5): 1006–21. 10.1080/21565503.2019.1629306
    https://doi.org/10.1080/21565503.2019.1629306 [Google Scholar]
  30. Heilbron, Johan
    2010 “Structure and Dynamics of the World System of Translation.” InUNESCO International Symposium ‘Translation and Cultural Mediation. https://wayback.archive-it.org/10611/20160106134301/portal.unesco.org/culture/en/files/40619/12684038723Heilbron.pdf/Heilbron.pdf
    [Google Scholar]
  31. Henderson, Brent, Peter Rohloff, and Robert Henderson
    2014 “More than Words: Towards a Development-Based Approach to Language Revitalization.” Language Documentation & Conservation81 (March): 75–91.
    [Google Scholar]
  32. Hutchins, John
    2005 “Example-Based Machine Translation: A Review and Commentary.” Machine Translation19 (3): 197–211. 10.1007/s10590‑006‑9003‑9
    https://doi.org/10.1007/s10590-006-9003-9 [Google Scholar]
  33. Iglesias, Gonzalo, Adrià de Gispert, Eduardo R. Banga, and William Byrne
    2009 “Rule Filtering by Pattern for Efficient Hierarchical Translation.” InProceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics on - EACL ’09, 380–88. Athens, Greece: Association for Computational Linguistics. 10.3115/1609067.1609109
    https://doi.org/10.3115/1609067.1609109 [Google Scholar]
  34. Johnson, Melvin, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
    2017 “Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation.” arXiv, August. arxiv.org/abs/1611.04558. 10.1162/tacl_a_00065
    https://doi.org/10.1162/tacl_a_00065 [Google Scholar]
  35. “Kari-Oca II Declaration” 2012 InIndigenous Peoples Global Conference on Rio+20 and Mother Earth. Kari-Oka Village, at Sacred Kari-Oka Púku, Rio de Janeiro, Brazil. https://www.ienearth.org/kari-oca-2-declaration/. Accessed27 January, 2023.
    [Google Scholar]
  36. Kasperė, Ramunė, Jolita Horbačauskienė, Jurgita Motiejūnienė, Vilmantė Liubinienė, Irena Patašienė, and Martynas Patašius
    2021 “Towards Sustainable Use of Machine Translation: Usability and Perceived Quality from the End-User Perspective.” Sustainability13 (23): 1–17. 10.3390/su132313430
    https://doi.org/10.3390/su132313430 [Google Scholar]
  37. Kenny, Dorothy, Joss Moorkens, and Félix do Carmo
    2020 “Fair MT: Towards Ethical, Sustainable Machine Translation.” Translation Spaces9 (1): 1–11. 10.1075/ts.00018.int
    https://doi.org/10.1075/ts.00018.int [Google Scholar]
  38. Khanna, Tanmai, Jonathan N. Washington, Francis M. Tyers, Sevilay Bayatlı, Daniel G. Swanson, Tommi A. Pirinen, Irene Tang, and Hèctor Alòs i Font
    2021 “Recent Advances in Apertium, a Free/Open-Source Rule-Based Machine Translation Platform for Low-Resource Languages.” Machine Translation35 (4): 475–502. 10.1007/s10590‑021‑09260‑6
    https://doi.org/10.1007/s10590-021-09260-6 [Google Scholar]
  39. Klaaßen, Lena, and Christian Stoll
    2021 “Harmonizing Corporate Carbon Footprints.” Nature Communications12 (1): 6149. 10.1038/s41467‑021‑26349‑x
    https://doi.org/10.1038/s41467-021-26349-x [Google Scholar]
  40. Koehn, Philipp, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, Evan Herbst, Hieu Hoang,
    2007 “Moses: Open Source Toolkit for Statistical Machine Translation.” InProceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, 177–180. Prague: Association for Computational Linguistics. 10.3115/1557769.1557821
    https://doi.org/10.3115/1557769.1557821 [Google Scholar]
  41. Koehn, Philipp, and Rebecca Knowles
    2017 “Six Challenges for Neural Machine Translation.” InProceedings of the First Workshop on Neural Machine Translation, 28–39. Vancouver: Association for Computational Linguistics. 10.18653/v1/W17‑3204
    https://doi.org/10.18653/v1/W17-3204 [Google Scholar]
  42. Leal, Pablo Alejandro
    2007 “Participation: The Ascendancy of a Buzzword in the Neo-Liberal Era.” Development in Practice17 (4–5): 539–48. 10.1080/09614520701469518
    https://doi.org/10.1080/09614520701469518 [Google Scholar]
  43. Lewis, William D.
    2010 “Haitian Creole: How to Build and Ship an MT Engine from Scratch in 4 Days, 17 Hours, & 30 Minutes,” 61.
    [Google Scholar]
  44. Mager Hois, Jesús Manuel, and Ivan Vladimir Meza Ruiz
    2018 “Hacia La Traducción Automática de Las Lenguas Indígenas de México.” InProceedings of the 2018 Digital Humanities Conference, 637–39. Mexico City.
    [Google Scholar]
  45. Marais, Kobus
    2014Translation Theory and Development Studies: A Complexity Theory Approach. New York: Routledge. 10.4324/9780203768280
    https://doi.org/10.4324/9780203768280 [Google Scholar]
  46. Moorkens, Joss
    2020 “Translation in the Neoliberal Era.” InThe Routledge Handbook of Translation and Globalization, edited byEsperança Bielsa and Dionysios Kapsaskis. Abingdon: Routledge. 10.4324/9781003121848‑27
    https://doi.org/10.4324/9781003121848-27 [Google Scholar]
  47. McDonald, Joseph, Baolin Li, Nathan Frey, Devesh Tiwari, Vijay Gadepally, and Siddharth Samsi
    2022 “Great Power, Great Responsibility: Recommendations for Reducing Energy for Training Language Models.” arXiv. arxiv.org/abs/2205.09646
  48. Nekoto, Wilhelmina, Vukosi Marivate, Tshinondiwa Matsila, Timi Fasubaa, Taiwo Fagbohungbe, Solomon Oluwole Akinola, Shamsuddeen Muhammad,
    2020 “Participatory Research for Low-Resourced Machine Translation: A Case Study in African Languages.” InFindings of the Association for Computational Linguistics: EMNLP 2020, 2144–2160. Online: Association for Computational Linguistics. 10.18653/v1/2020.findings‑emnlp.195
    https://doi.org/10.18653/v1/2020.findings-emnlp.195 [Google Scholar]
  49. Oflazer, Kemal, and Ilknur Durgar El-Kahlout
    2007 “Exploring Different Representational Units in English-to-Turkish Statistical Machine Translation.” InProceedings of the Second Workshop on Statistical Machine Translation, 25–32. Prague: Association for Computational Linguistics. 10.3115/1626355.1626359
    https://doi.org/10.3115/1626355.1626359 [Google Scholar]
  50. Öktem, Alp, Muhannad Albayk Jaam, Eric DeLuca, and Grace Tang
    2020 “Gamayun – Language Technology for Humanitarian Response.” In2020 IEEE Global Humanitarian Technology Conference (GHTC), 1–4. 10.1109/GHTC46280.2020.9342939
    https://doi.org/10.1109/GHTC46280.2020.9342939 [Google Scholar]
  51. Patterson, David, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean
    2022 “The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink.” Computer55 (7): 18–28. 10.1109/MC.2022.3148714
    https://doi.org/10.1109/MC.2022.3148714 [Google Scholar]
  52. Rico, Celia, María Del Mar Sánchez Ramos, and Antoni Oliver
    2020 “INMIGRA3: Building a Case for NGOs and NMT.” InProceedings of the 22nd Annual Conference of the European Association for Machine Translation, 469–70. Lisbon: European Association for Machine Translation. https://aclanthology.org/2020.eamt-1.56
    [Google Scholar]
  53. Riemland
    Riemland 2022 “Translation and Technocracy in Development: Defining the potentials and limitations of translation technology for Maya inclusion in Guatemalan development.” Linguistica Antverpiensia, New Series: Themes in Translation Studies211: 203–221.
    [Google Scholar]
  54. Romero, Sergio
    2017 “The labyrinth of diversity: The sociolinguistics of Mayan languages.” InThe Mayan Languages, edited byJudith Aissen, Nora C. England, and Roberto Zavala Maldonado, 379–400. Routledge Language Family Series. London and New York: Routledge. 10.4324/9781315192345‑15
    https://doi.org/10.4324/9781315192345-15 [Google Scholar]
  55. Shterionov, Dimitar, and Eva Vanmassenhove
    2023 “The Ecological Footprint of Neural Machine Translation Systems.” InTowards Responsible Machine Translation: Ethical and Legal Considerations in Machine Translation, edited byHelena Moniz and Carla Parra Escartín, 185–213. Cham: Springer International Publishing AG. 10.1007/978‑3‑031‑14689‑3_10
    https://doi.org/10.1007/978-3-031-14689-3_10 [Google Scholar]
  56. Strubell, Emma, Ananya Ganesh, and Andrew McCallum
    2019 “Energy and Policy Considerations for Deep Learning in NLP.” InProceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–50. Florence. 10.18653/v1/P19‑1355
    https://doi.org/10.18653/v1/P19-1355 [Google Scholar]
  57. Tesseur, Wine
    2022Translation as Social Justice: Translation Policies and Practices in Non-Governmental Organisations. New Perspectives in Translation and Interpreting Studies 5. New York: Routledge. 10.4324/9781003125822
    https://doi.org/10.4324/9781003125822 [Google Scholar]
  58. Torregrosa, Daniel, Nivranshu Pasricha, Bharathi Raja Chakravarthi, Juan Alonso, Noe Casas, Maraim Masoud, and Mihael Arcan
    2019 “Leveraging Rule-Based Machine Translation Knowledge for Under-Resourced Neural Machine Translation Models.” InProceedings of Machine Translation Summit XVII, 21:125–33. Dublin.
    [Google Scholar]
  59. Tyers, Francis, and Robert Henderson
    2021 “A Corpus of K’iche’ Annotated for Morphosyntactic Structure.” InProceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, 10–20. Online: Association for Computational Linguistics. 10.18653/v1/2021.americasnlp‑1.2
    https://doi.org/10.18653/v1/2021.americasnlp-1.2 [Google Scholar]
  60. Wang, Wei, Taro Watanabe, Macduff Hughes, Tetsuji Nakagawa, and Ciprian Chelba
    2018 “Denoising Neural Machine Translation Training with Trusted Data and Online Data Selection.” In2018 Third Conference on Machine Translation, 133–43. Belgium. arxiv.org/abs/1809.00068. 10.18653/v1/W18‑6314
    https://doi.org/10.18653/v1/W18-6314 [Google Scholar]
  61. Webb, Meghan, and Miguel Cuj
    2020 “Guatemala’s Public Health Messaging in Mayan Languages during the COVID-19 Pandemic.” Journal of Indigenous Social Development9 (3): 102–9.
    [Google Scholar]
  62. Zhou, Zhong, and Alex Waibel
    2021 “Active Learning for Massively Parallel Translation of Constrained Text into Low Resource Languages.” InProceedings of the LoResMT Workshop of the 18th Biennial Machine Translation Summit in 2021. CitetononCRdoi:10.48550/arXiv.2108.07127
    https://doi.org/Cite to nonCR doi: 10.48550/arXiv.2108.07127 [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error