1887
image of Faster, but not less demanding

Abstract

Abstract

Recent efforts in debiasing Machine Translation (MT) concentrate on gender-inclusive or neutral language for the translation of sentences containing ambiguous gender entities. Such studies, however, ignore cases that require a specific gender beyond masculine and feminine, i.e. non-binary. By comparing translation with post-editing, the present contribution investigates whether MT can be a useful tool to produce gender-fair translations despite its biased outputs. Twelve language professionals had to either translate or post-edit three English-language texts mentioning non-binary actors into German. For each text, they had to use a different gender-fair language (GFL) approach, i.e. gender-neutral rewording, gender-inclusive characters, and neosystems. Results from screen recordings, retrospective interviews, and target text analysis show that, while post-editing is usually faster than translation, the perceived cognitive effort is generally high with no significant differences emerging in the translation process and, partially, the number of mistakes in the use of GFL.

Available under the CC BY 4.0 license.
Loading

Article metrics loading...

/content/journals/10.1075/ts.24035.lar
2025-03-11
2025-03-22
Loading full text...

Full text loading...

/deliver/fulltext/10.1075/ts.24035.lar/ts.24035.lar.html?itemId=/content/journals/10.1075/ts.24035.lar&mimeType=html&fmt=ahah

References

  1. APA Style
    APA Style 2019a “Gender.” American Psychological Association. https://apastyle.apa.org/style-grammar-guidelines/bias-free-language/gender
  2. APA Style
    APA Style 2019b “Singular “They”.” American Psychological Association. https://apastyle.apa.org/style-grammar-guidelines/grammar/singular-they
  3. Attig, Remy
    2023 “A Call for Community-Informed Translation: Respecting Queer Self-Determination across Linguistic Lines.” Translation and Interpreting Studies (): –. 10.1075/tis.21001.att
    https://doi.org/10.1075/tis.21001.att [Google Scholar]
  4. Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
    2020 “Language Models Are Few-Shot Learners.” InAdvances in Neural Information Processing Systems, : –. Curran Associates, Inc.https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
    [Google Scholar]
  5. Burton, William M.
    2010 “Inverting the Text: A Proposed Queer Translation Praxis.” InOther Words: The Journal for Literary Translators: –.
    [Google Scholar]
  6. Chamberlain, Lori
    1988 “Gender and the Metaphorics of Translation.” Signs: Journal of Women in Culture and Society (): –. 10.1086/494428
    https://doi.org/10.1086/494428 [Google Scholar]
  7. Corbett, Greville G.
    1991Gender. 1st ed.Cambridge University Press. 10.1017/CBO9781139166119
    https://doi.org/10.1017/CBO9781139166119 [Google Scholar]
  8. Démont, Marc
    2017 “On Three Modes of Translating Queer Literary Texts.” InQueering Translation, Translating the Queer, –. Routledge. 10.4324/9781315505978‑12
    https://doi.org/10.4324/9781315505978-12 [Google Scholar]
  9. Dev, Sunipa, Masoud Monajatipoor, Anaelia Ovalle, Arjun Subramonian, Jeff Phillips, and Kai-Wei Chang
    2021 “Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies.” InProceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, –. Online and Punta Cana, Dominican Republic: Association for Computational Linguistics. 10.18653/v1/2021.emnlp‑main.150
    https://doi.org/10.18653/v1/2021.emnlp-main.150 [Google Scholar]
  10. Dresing, Thorsten, and Thorsten Pehl
    2018Praxisbuch Interview, Transkription & Analyse. Anleitungen Und Regelsysteme Für Qualitativ Forschende. dr dresing & pehl GmbH.
    [Google Scholar]
  11. Drugan, Joanna, and Rebecca Tipton
    2017 “Translation, Ethics and Social Responsibility.” The Translator (): –. 10.1080/13556509.2017.1327008
    https://doi.org/10.1080/13556509.2017.1327008 [Google Scholar]
  12. Gromann, Dagmar, Manuel Lardelli, Katta Spiel, Sabrina Burtscher, Lukas Daniel Klausner, Arthur Mettinger, Igor Miladinovic, Sigrid Schefer-Wenzl, Daniela Duh, and Katharina Bühn
    2023 “Participatory Research as a Path to Community-Informed, Gender-Fair Machine Translation.” InProceedings of the First Workshop on Gender-Inclusive Translation Technologies, –. European Association for Machine Translation. https://aclanthology.org/2023.gitt-1.5
    [Google Scholar]
  13. Hockett, Charles F.
    1958A Course in Modern Linguistics. Macmillan. 10.1111/j.1467‑1770.1958.tb00870.x
    https://doi.org/10.1111/j.1467-1770.1958.tb00870.x [Google Scholar]
  14. Jakobsen, Arnt Lykke
    2017 “Translation Process Research.” InThe Handbook of Translation and Cognition, edited byJohn W. Schwieter and Aline Ferreira, –. Wiley Online Library. 10.1002/9781119241485.ch2
    https://doi.org/10.1002/9781119241485.ch2 [Google Scholar]
  15. Kincaid, J Peter, Robert P. Fishburne Jr, Richard L. Rogers, and Brad S. Chissom
    1975 “Derivation of New Readability Formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel.” Naval Technical Training Command Millington TN Research Branch. 10.21236/ADA006655
    https://doi.org/10.21236/ADA006655 [Google Scholar]
  16. Kuckartz, Udo
    2014Qualitative Text Analysis: A Guide to Methods, Practice and Using Software. Sage. 10.4135/9781446288719
    https://doi.org/10.4135/9781446288719 [Google Scholar]
  17. Lardelli, Manuel
    2024 “Gender-Fair Translation: A Case Study beyond the Binary.” Perspectives (): –. 10.1080/0907676X.2023.2268654
    https://doi.org/10.1080/0907676X.2023.2268654 [Google Scholar]
  18. Lardelli, Manuel, Giuseppe Attanasio, and Anne Lauscher
    2024 “Building Bridges: A Dataset for Evaluating Gender-Fair Machine Translation into German.” InFindings of the Association for Computational Linguistics: ACL 2024, edited byLun-Wei Ku, Andre Martins, and Vivek Srikumar, –. Association for Computational Linguistics. 10.18653/v1/2024.findings‑acl.448
    https://doi.org/10.18653/v1/2024.findings-acl.448 [Google Scholar]
  19. Lardelli, Manuel, Timm Dill, Giuseppe Attanasio, and Anne Lauscher
    2024 “Sparks of Fairness: Preliminary Evidence of Commercial Machine Translation as English-to-German Gender-Fair Dictionaries.” InProceedings of the 2nd International Workshop on Gender-Inclusive Translation Technologies, edited byBeatrice Savoldi, Janiça Hackenbuchner, Luisa Bentivogli, Joke Daems, Eva Vanmassenhove, and Jasmijn Bastings, –. European Association for Machine Translation (EAMT). https://aclanthology.org/2024.gitt-1.2
    [Google Scholar]
  20. Lardelli, Manuel, and Dagmar Gromann
    2023a “Gender-Fair (Machine) Translation.” InProceedings of the New Trends in Translation and Technology Conference — NeTTT 2022, –.
    [Google Scholar]
  21. 2023b “Gender-Fair Post-Editing: A Case Study Beyond the Binary.” InProceedings of the 24th Annual Conference of the European Association for Machine Translation, –.
    [Google Scholar]
  22. 2023c “Translating Non-Binary Coming-out Reports: Gender-Fair Language Strategies and Use in News Articles.” The Journal of Specialised Translation: –.
    [Google Scholar]
  23. Lauscher, Anne, Debora Nozza, Ehm Miltersen, Archie Crowley, and Dirk Hovy
    2023 “What about “Em”? How Commercial Machine Translation Fails to Handle (Neo-)Pronouns.” InProceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), –. Association for Computational Linguistics. https://aclanthology.org/2023.acl-long.23. 10.18653/v1/2023.acl‑long.23
    https://doi.org/10.18653/v1/2023.acl-long.23 [Google Scholar]
  24. López, Ártemis
    2019 “Tú, yo, elle y el lenguaje no binario.” La Linterna del Traductor (blog). Published19 November 2019. lalinternadeltraductor.org/n19/traducir-lenguaje-no-binario.html
    [Google Scholar]
  25. 2022 “Trans(de)Letion: Audiovisual Translations of Gender Identities for Mainstream Audiences.” Journal of Language and Sexuality(): –. 10.1075/jls.20023.lop
    https://doi.org/10.1075/jls.20023.lop [Google Scholar]
  26. Mellinger, Christopher D., and Thomas A. Hanson
    2016Quantitative Research Methods in Translation and Interpreting Studies. Taylor & Francis. 10.4324/9781315647845
    https://doi.org/10.4324/9781315647845 [Google Scholar]
  27. Misiek, Szymon
    2020 “Misgendered in Translation?: Genderqueerness in Polish Translations of English-Language Television Series.” Anglica. An International Journal of English Studies(): –. 10.7311/0860‑5734.29.2.09
    https://doi.org/10.7311/0860-5734.29.2.09 [Google Scholar]
  28. Monti, Johanna
    2020 “Gender Issues in Machine Translation: An Unsolved Problem?” InThe Routledge Handbook of Translation, Feminism and Gender, edited byLuise \lowercasevon Flotow and Kamal Hala, –. Routledge. 10.4324/9781315158938‑39
    https://doi.org/10.4324/9781315158938-39 [Google Scholar]
  29. Muñoz Martín, Ricardo, and José Ma. Cardona Guerra
    2019 “Translating in Fits and Starts: Pause Thresholds and Roles in the Research of Translation Processes.” Perspectives(): –. 10.1080/0907676X.2018.1531897
    https://doi.org/10.1080/0907676X.2018.1531897 [Google Scholar]
  30. O’Brien, Sharon
    2010 “Eye Tracking in Translation Process Research: Methodological Challenges and Solutions.” InMethodology, Technology and Innovation in Translation Process Research: A Tribute to Arnt Lykke Jakobsen, edited byInger Mees, Fabio Alves, and Susanne Göpferich, –. Samfundslitteratur.
    [Google Scholar]
  31. Pérez-Ortiz, Juan Antonio, Mikel L. Forcada, and Felipe Sánchez-Martínez
    2022 “How Neural Machine Translation Works.” InMachine translation for everyone: Empowering users in the age of artificial intelligence, edited byDorothy Kenny. Language Science Press. 10.5281/ZENODO.6760020
    https://doi.org/10.5281/ZENODO.6760020 [Google Scholar]
  32. Piergentili, Andrea, Beatrice Savoldi, Dennis Fucci, Matteo Negri, and Luisa Bentivogli
    2023 “Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the GeNTE Corpus.” InProceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, edited byHouda Bouamor, Juan Pino, and Kalika Bali, –. Association for Computational Linguistics. https://aclanthology.org/2023.emnlp-main.873. 10.18653/v1/2023.emnlp‑main.873
    https://doi.org/10.18653/v1/2023.emnlp-main.873 [Google Scholar]
  33. Saunders, Danielle, Rosie Sallis, and Bill Byrne
    2020 “Neural Machine Translation Doesn’t Translate Gender Coreference Right Unless You Make It.” InProceedings of the Second Workshop on Gender Bias in Natural Language Processing, –. Association for Computational Linguistics. https://aclanthology.org/2020.gebnlp-1.4
    [Google Scholar]
  34. Savoldi, Beatrice, Marco Gaido, Luisa Bentivogli, Matteo Negri, and Marco Turchi
    2021 ‘Gender Bias in Machine Translation’. Transactions of the Association for Computational Linguistics (): –. 10.1162/tacl_a_00401
    https://doi.org/10.1162/tacl_a_00401 [Google Scholar]
  35. Savoldi, Beatrice, Andrea Piergentili, Dennis Fucci, Matteo Negri, and Luisa Bentivogli
    2024 “A Prompt Response to the Demand for Automatic Gender-Neutral Translation.” InProceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers), edited byYvette Graham and Matthew Purver, –. Association for Computational Linguistics. https://aclanthology.org/2024.eacl-short.23
    [Google Scholar]
  36. Sczesny, Sabine, Magda Formanowicz, and Franziska Moser
    2016 “Can Gender-Fair Language Reduce Gender Stereotyping and Discrimination?” Frontiers in Psychology. https://www.frontiersin.org/article/10.3389/fpsyg.2016.00025. 10.3389/fpsyg.2016.00025
    https://doi.org/10.3389/fpsyg.2016.00025 [Google Scholar]
  37. Simon, Sherry
    1996Gender in Translation: Cultural Identity and the Politics of Transmission. Routledge.
    [Google Scholar]
  38. Šincek, Marijana
    2020 “On, ona, ono: Translating gender neutral pronouns into Croatian.” InZbornik Radova Međunarodnog Simpozija Mladih Anglista, Kroatista i Talijanista, –. Sveučilište u Splitu, Filozofski fakultet. https://urn.nsk.hr/urn:nbn:hr:172:208617
    [Google Scholar]
  39. Stanczak, Karolina, and Isabelle Augenstein
    2021 “A Survey on Gender Bias in Natural Language Processing.” arXiv Preprint arXiv:2112.14168.
    [Google Scholar]
  40. TAUS
    TAUS 2010 “MT Post-Editing Guidelines.” Taus.Net. Accessed20 January 2025. https://www.taus.net/resources/reports/mt-post-editing-guidelines
  41. Vergoossen, Hellen Petronella, Emma Aurora Renström, Anna Lindqvist, and Marie Gustafsson Sendén
    2020 “Four Dimensions of Criticism Against Gender-Fair Language.” Sex Roles(): –. 10.1007/s11199‑019‑01108‑x
    https://doi.org/10.1007/s11199-019-01108-x [Google Scholar]
  42. Von Flotow, Luise
    1997Translation and Gender: Translating in The ‘Era of Feminism’. Routledge. 10.1353/book6616
    https://doi.org/10.1353/book6616 [Google Scholar]
  43. Sex Education, Netflix
    Sex Education, Netflix 2019–2023
  44. Grey’s Anatomy, ABC
    Grey’s Anatomy, ABC 2024-today
  45. Sort Of, CBC
    Sort Of, CBC 2021–2023
/content/journals/10.1075/ts.24035.lar
Loading
/content/journals/10.1075/ts.24035.lar
Loading

Data & Media loading...

  • Article Type: Research Article
Keywords: gender bias ; post-editing ; gender-fair language ; queer translation studies ; non-binary
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error