1887
Volume 11, Issue 1
  • ISSN 2352-1805
  • E-ISSN: 2352-1813
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Machine translation (MT) and post-editing (PE) have become increasingly common in translation training (Guerberof-Arenas and Moorkens 2019; Sánchez Ramos 2022). However, few studies have explored how trainee translators’ emotional responses to MT and PE impact their motivation to incorporate these tools in their translation practice. Understanding and managing the emotions of students is crucial to integrating MT and PE within translator training as a whole, and to fully preparing students for their professional careers. Building on previous studies applying emotional narrative analysis to translators’ experiences with technology (Koskinen and Ruokonen 2017; Ruokonen and Koskinen 2017), this article explores the emotional responses of a group of 35 Spanish undergraduate translation students to MT and PE using an emotional narrative methodology. Participants were asked to write an emotional narrative in the form of either a love letter or a break-up letter addressed to MT. Overall, participants were found to be more positive than negative in their attitude towards MT and PE. Among the 35 emotional narratives, there were 20 love letters and 15 break-up letters. Thematic analysis revealed two main themes in the students’ narratives relating to (1) satisfaction with MT output and (2) the efficiency of MT. These exploratory findings reinforce Yang and Wang’s (2019) call for more research into what factors contribute to students’ intention to use MT and the consequent effects of using MT. They can also inform pedagogy so that translator trainers better understand the factors that motivate students to incorporate MT in their translation practice.

Loading

Article metrics loading...

/content/journals/10.1075/ttmc.00152.san
2025-01-07
2025-01-20
Loading full text...

Full text loading...

References

  1. Allen, Jeffrey H.
    2003 “Post-Editing.” InComputers and Translation: A Translator’s Guide, ed. byHarold Somers, 297–318. Amsterdam: John Benjamins. 10.1075/btl.35.19all
    https://doi.org/10.1075/btl.35.19all [Google Scholar]
  2. Bowker, Lynne, and Jairo Buitrago Ciro
    2015 “Investigating the Usefulness of Machine Translation for Newcomers at the Public Library.” Translation and Interpreting Studies10(2): 165–186. 10.1075/tis.10.2.01bow
    https://doi.org/10.1075/tis.10.2.01bow [Google Scholar]
  3. Bowker, Lynne, and Gloria Corpas Pastor
    2015 “Translation Technology.” InHandbook of Computational Linguistics, ed. byRuslan Miktov, 871–905. Oxford: Oxford University Press. 10.1093/oxfordhb/9780199573691.013.007
    https://doi.org/10.1093/oxfordhb/9780199573691.013.007 [Google Scholar]
  4. Braun, Virginia, and Victoria Clarke
    2013Successful Qualitative Research: A Practical Guide for Beginners. London: SAGE.
    [Google Scholar]
  5. Briggs, Neil
    2018 “Neural Machine Translation Tools in the Language Learning Classroom: Students’ Use, Perceptions, and Analyses.” JALT CALL Journal14 (1): 3–24. 10.29140/jaltcall.v14n1.221
    https://doi.org/10.29140/jaltcall.v14n1.221 [Google Scholar]
  6. Briva-Iglesias, Vicent
    2021 “Traducción humana vs traducción automática: análisis contrastive e implicaciones para la aplicación de la traducción automática en la traducción jurídica.” Mutatis Mutandis14(2): 571–600. 10.17533/udea.mut.v14n2a14
    https://doi.org/10.17533/udea.mut.v14n2a14 [Google Scholar]
  7. Cadwell, Patrick, Sheila Castilho, Sharon O’Brien, and Linda Mitchell
    2016 “Human Factors in Machine Translation and Post-Editing among Institutional Translators.” Translation Spaces5 (2): 222–243. 10.1075/ts.5.2.04cad
    https://doi.org/10.1075/ts.5.2.04cad [Google Scholar]
  8. Carl, Michael, Barbara Dragsted, Jakob Elming, Danial Hardt, and Arnt Lykke Jakobsen
    2011 “The Process of Post-editing: A Pilot Study.” InProceedings of the 8th International NLPSC Workshop: Human-Machine Interaction in Translation, ed. byBernadette Sharp, Michael Zock, Michael Carl, and Arnt Lykee Jakobsen, 131–142. Copenhagen: Samfundslitteratur.
    [Google Scholar]
  9. Çetiner, Caner, and İşisağ, Korkut Uluç
    2019 “Undergraduate Level Translation Students’ Attitudes towards Machine Translation Post-Editing Training.” International Journal of Languages’ Education and Teaching7(1): 110–120. 10.18298/ijlet.3242
    https://doi.org/10.18298/ijlet.3242 [Google Scholar]
  10. Cheung, Ronnie, and Doug Vogel
    2013 “Predicting User Acceptance of Collaborative Technologies: An Extension of the Technology Acceptance Model for E-Learning.” Computers & Education631: 160–175. 10.1016/j.compedu.2012.12.003
    https://doi.org/10.1016/j.compedu.2012.12.003 [Google Scholar]
  11. Cid Leal, Pilar, María Carmen Espín-García, and Marisa Presas
    2019 “Traducción automática y posedición. Perfiles y competencias en los programas de formación de traductores.” MonTi. Monografías de Traducción e Interpretación111: 187–214. 10.6035/MonTI.2019.11.7
    https://doi.org/10.6035/MonTI.2019.11.7 [Google Scholar]
  12. Do Carmo, Félix, and Joss Moorkens
    2021 “Differentiating Editing, Post-Editing, and Revision.” InTranslation Revision and Post-Editing: Industry Practices and Cognitive Processes, ed. byMaarit Koponen, Brian Mossop, Isabelle S. Robert, and Giovanna Scocchera, 35–50. London: Routledge. 10.4324/9781003096962‑4
    https://doi.org/10.4324/9781003096962-4 [Google Scholar]
  13. Doherty, Stephen, and Dorothy Kenny
    2014 “The Design and Evaluation of a Statistical Machine Translation Syllabus for Translation Students.” Interpreter and Translator Trainer8 (2): 295–315. 10.1080/1750399X.2014.937571
    https://doi.org/10.1080/1750399X.2014.937571 [Google Scholar]
  14. Dorst, Aletta G., Susana Valdez, and Heather Bouman
    2022 “Machine Translation in the Multilingual Classroom: How, When and Why Do Humanities Students at a Dutch University Use Machine Translation?” Translation and Translanguaging in Multilingual Contexts8 (1): 49–66. 10.1075/ttmc.00080.dor
    https://doi.org/10.1075/ttmc.00080.dor [Google Scholar]
  15. Garcia, Ignacio
    2012 “A Brief History of Post-Editing and of Research on Post-Editing.” Anglo Saxonica3 (3): 291–308.
    [Google Scholar]
  16. Gerber, Elizabeth
    2011 “Tech Break Up: A Research Method for Understanding People’s Attachment to Their Technology.” InProceedings of the 8th ACM Conference on Creativity and Cognition, ed. byAshol Goel, 137–146. New York: Association for Computing Machinery. 10.1145/2069618.2069642
    https://doi.org/10.1145/2069618.2069642 [Google Scholar]
  17. González Pastor, Diana
    2021 “Introducing Machine Translation in the Translation Classroom: A Survey on Students’ Attitudes and Perceptions.” Tradumàtica191: 47–65. 10.5565/rev/tradumatica.273
    https://doi.org/10.5565/rev/tradumatica.273 [Google Scholar]
  18. Guerberof-Arenas, Ana
    2014 “Correlations between Productivity and Quality when Post-Editing in a Professional Context.” Machine Translation28 (3–4): 165–186. 10.1007/s10590‑014‑9155‑y
    https://doi.org/10.1007/s10590-014-9155-y [Google Scholar]
  19. Guerberof-Arenas, Ana, and Joss Moorkens
    2019 “Machine Translation and Post-Editing Training as Part of a Master’s Programme.” Journal of Specialised Translation311: 217–238.
    [Google Scholar]
  20. Holzinger, Andreas
    2005 “Usability Engineering Methods for Software Developers.” Communications of the ACM48 (1): 71–74. 10.1145/1039539.1039541
    https://doi.org/10.1145/1039539.1039541 [Google Scholar]
  21. Kenny, Dorothy, and Andy Way
    2001 “Teaching Machine Translation and Translation Technology: A Contrastive Study.” InProceedings of MT Summit VIII: Workshop on Teaching Machine Translation, ed. byBente Maegaard. https://aclanthology.org/2001.mtsummit-teach.6.pdf
    [Google Scholar]
  22. Keyte, Julia
    2015 “Hardware Hopes: Examining Emotional Connections to Computers Through Creative Story Telling.” InProduct Lifetimes and the Environment (PLATE) Conference, ed. byTim Cooper, Naomi Braithwaite, Mariale Moreno, and Giuseppe Salvia, 166–172. Nottingham: Nottingham Trent University.
    [Google Scholar]
  23. Kleres, Jochen
    2010 “Emotions and Narrative Analysis: A Methodological Approach.” Journal for the Theory of Social Behaviour41 (2): 18–202. 10.1111/j.1468‑5914.2010.00451.x
    https://doi.org/10.1111/j.1468-5914.2010.00451.x [Google Scholar]
  24. Konttinen, Kalle, Leena Salmi, and Maarit Koponen
    2021 “Revision and Post-Editing Competences in Translator Education.” InTranslation, Revision and Post-Editing: Industry Practices and Cognitive Processes, ed. byMaarit Koponen, Brian Mossop, Isabelle S. Robert, and Giovanna Scocchera, 185–201. London: Routledge. 10.4324/9781003096962‑15
    https://doi.org/10.4324/9781003096962-15 [Google Scholar]
  25. Koponen, Maarit
    2015 “How to Teach Machine Translation Post-Editing? Experiences from a Post-Editing Course.” In4th Workshop on Post-Editing Technology and Practice (WPTP4), ed. bySharon O’Brien, and Michel Simard, 2–15. Washington, DC: Association for Machine Translation in the Americas.
    [Google Scholar]
  26. Koskinen, Kaisa, and Minna Ruokonen
    2017 “Love Letters or Hate Mail? Translators’ Technology Acceptance in the Light of Their Emotional Narratives.” InHuman Issues in Translation Technology, ed. byDorothy Kenny, 26–42. London: Routledge.
    [Google Scholar]
  27. Krings, Hans P.
    2001Repairing Texts: Empirical Investigations of Machine Translation Post-Editing Processes. Kent, OH: Kent State University Press.
    [Google Scholar]
  28. Mellinger, Christopher
    2017 “Translators and Machine Translation: Knowledge and Skills Gaps in Translator Pedagogy.” The Interpreter and Translator Trainer11(4): 280–293. 10.1080/1750399X.2017.1359760
    https://doi.org/10.1080/1750399X.2017.1359760 [Google Scholar]
  29. Moorkens, Joss
    2018 “What to Expect from Neural Machine Translation: A Practical In-Class Translation Evaluation Exercise.” Interpreter and Translator Trainer121: 375–387. 10.1080/1750399X.2018.1501639
    https://doi.org/10.1080/1750399X.2018.1501639 [Google Scholar]
  30. Nejar, Abeiene
    2017 “What’s Love Got to Do with Research?.” UX Collective. January 4th. https://uxdesign.cc/whats-love-got-to-do-with-research-c31fc7f92221
    [Google Scholar]
  31. Nitzke, Jean
    2016 “Monolingual Post-Editing: An Exploratory Study on Research Behaviour and Target Text Quality.” InEye-Tracking and Applied Linguistics, ed. bySilvia Hansen-Schirra, and Sambor Grucza, 83–109. Berlin: Language Science Press.
    [Google Scholar]
  32. Nussbaum, Martha
    2003Upheavals of Thought: The Intelligence of Emotions. Cambridge: Cambridge University Press.
    [Google Scholar]
  33. O’Brien, Sharon
    2011 “Towards Predicting Post-Editing Productivity.” Machine Translation25 (3): 197–215. 10.1007/s10590‑011‑9096‑7
    https://doi.org/10.1007/s10590-011-9096-7 [Google Scholar]
  34. Ortego Antón, Teresa
    2022La investigación en tecnologías de la traducción. parámetros de la digitalización presente y la posible incidencia en el perfil de los futuros profesionales de la comunicación interlingüística. Berlin: Peter Lang.
    [Google Scholar]
  35. Pérez Macías, Lorena
    2020 “What Do Translators Think about Post-Editing? A Mixed-Methods Study of Translators’ Fears, Worries, and Preferences on Machine Translation Post-Editing.” Tradumática181: 11–32. 10.5565/rev/tradumatica.227
    https://doi.org/10.5565/rev/tradumatica.227 [Google Scholar]
  36. Plitt, Mirko, and François Masselot
    2010 “A Productivity Test of Statistical Machine Translation Post-Editing in a Typical Localisation Context.” Prague Bulletin of Mathematical Linguistics931: 7–16. 10.2478/v10108‑010‑0010‑x
    https://doi.org/10.2478/v10108-010-0010-x [Google Scholar]
  37. Pym, Anthony, and Esther Torres-Simón
    2016 “Designing a Course in Translation Studies to Respond to Students’ Questions.” Interpreter and Translator Trainer10 (2): 183–203. 10.1080/1750399X.2016.1198179
    https://doi.org/10.1080/1750399X.2016.1198179 [Google Scholar]
  38. Rico, Celia, and Diana González Pastor
    2022 “The Role of Machine Translation in Translation Education: A Thematic Analysis of Translator Educators’ Beliefs.” International Journal for Translation and Interpreting Research14 (1): 177–197. 10.12807/ti.114201.2022.a010
    https://doi.org/10.12807/ti.114201.2022.a010 [Google Scholar]
  39. Rico, Celia, and María del Mar Sánchez Ramos
    2023 “The Ethics of Machine Translation Post-Editing in the Translation Ecosystem.” InTowards Responsible Machine Translation: Ethical and Legal Considerations in Machine Translation, ed. byCarla Parra Escartín, and Helena Moninz, 95–112. Cham, Switzerland: Springer. 10.1007/978‑3‑031‑14689‑3_6
    https://doi.org/10.1007/978-3-031-14689-3_6 [Google Scholar]
  40. Rico, Celia, and Enrique Torrejón
    2012 “Skills and Profile of the New Role of the Translator as MT Post-Editor.” Tradumàtica101: 166–178.
    [Google Scholar]
  41. Rossi, Caroline
    2017 “Introducing Statistical Machine Translation in Translator Training: From Uses and Perceptions to Course Design, and Back Again.” Tradumàtica151: 48–62. 10.5565/rev/tradumatica.195
    https://doi.org/10.5565/rev/tradumatica.195 [Google Scholar]
  42. Ruokonen, Minna, and Kaisa Koskinen
    2017 “Dancing with Technology: Translators’ Narratives on the Dance of Human and Machinic Agency in Translation Work.” The Translator23 (3): 310–323. 10.1080/13556509.2017.1301846
    https://doi.org/10.1080/13556509.2017.1301846 [Google Scholar]
  43. Sánchez-Gijón, Pilar
    2016 “La posedición: hacia una definición competencial del perfil y una descripción multidimensional del fenómeno.” Sendebar271: 151–162. 10.30827/sendebar.v27i0.4016
    https://doi.org/10.30827/sendebar.v27i0.4016 [Google Scholar]
  44. 2020 “La posedición bajo el microscopio.” InPerfiles estratégicos de traductores e intérpretes, ed. bySusana Álvarez Álvarez, and Maria Teresa Ortego Antón, 81–104. Granada: Comares.
    [Google Scholar]
  45. Sánchez Ramos, María del Mar
    2022 “Public Service Interpreting and Translation Training: A Path towards Digital Adaptation to Machine Translation and Post-Editing.” Interpreter and Translator Trainer16 (3): 294–308. 10.1080/1750399X.2022.2092829
    https://doi.org/10.1080/1750399X.2022.2092829 [Google Scholar]
  46. Sánchez Ramos, María del Mar, and Celia Rico-Pérez
    2020Traducción automática. Conceptos clave, procesos de evaluación y técnicas de posedición. Granada: Comares.
    [Google Scholar]
  47. Schwartz, Lane
    2014 “Monolingual Post-editing by a Domain Expert Is Highly Effective for Translation Triage.” InProceedings of the Third Workshop on Post-Editing Technology and Practice, ed. bySharon O’Brien, Michel Simard, and Lucia Specia, 34–44. Vancouver: Association for Machine Translation in the Americas.
    [Google Scholar]
  48. Stasimioti, Maria, and Vilelmini Sosoni
    2019 “Undergraduate Translation Students’ Performance and Attitude vis-à-vis Machine Translation and Post-editing: Does Training Play a Role?” InTranslating and the Computer 41 — Proceedings, 125–136. Geneva: Editions Tradulex.
    [Google Scholar]
  49. Stemler, Steve
    2000 “An Overview of Content Analysis.” Practical Assessment, Research, and Evaluation7(1), Article 17. https://scholarworks.umass.edu/pare/vol7/iss1/17. 10.7275/z6fm‑2e34
    https://doi.org/10.7275/z6fm-2e34 [Google Scholar]
  50. Venkatesh, Viswanath, and Hillol Bala
    2008 “Technology Acceptance Model 3 and a Research Agenda on Interventions.” Decision Sciences39 (2): 273–315. 10.1111/j.1540‑5915.2008.00192.x
    https://doi.org/10.1111/j.1540-5915.2008.00192.x [Google Scholar]
  51. Vieira, Lucas Nunes
    2019 “Post-Editing of Machine Translation.” InThe Routledge Handbook of Translation and Technology, ed. byMinako O’Hagan, 319–337. London: Routledge. 10.4324/9781315311258‑19
    https://doi.org/10.4324/9781315311258-19 [Google Scholar]
  52. 2020 “Automation Anxiety and Translators.” Translation Studies13 (1): 1–21. 10.1080/14781700.2018.1543613
    https://doi.org/10.1080/14781700.2018.1543613 [Google Scholar]
  53. Vieira, Lucas Nunes, and Elisa Alonso
    2020 “Translating Perceptions and Managing Expectations: An Analysis of Management and Production Perspectives on Machine Translation.” Perspectives28 (2): 163–184. 10.1080/0907676X.2019.1646776
    https://doi.org/10.1080/0907676X.2019.1646776 [Google Scholar]
  54. Vieira, Lucas Nunes, Elisa Alonso, and Lindsay Bywood
    2019 “Introduction: Post-Editing in Practice: Process, Product and Networks.” Journal of Specialised Translation311: 2–13.
    [Google Scholar]
  55. Vigier Moreno, Francisco Javier, and Lorena Pérez Macías
    2020 “¿Es eficaz la posedición para la traducción inversa de textos jurídicos? Una experiencia con estudiantes de posgrado.” InClaves para la innovación pedagógica antes los nuevos retos: respuestas en la vanguardia de la práctica educativa, ed. byEloy López-Meneses, David Cobos-Sanchez, Laura Molina-García, Alicia Jaén-Martínez, and Antonio Hilario Martín-Padilla, 2499–2508. Madrid: Octaedro.
    [Google Scholar]
  56. Witczak, Olga
    2016 “Incorporating Post-Editing into a Computer-assisted Translation Course: A Study of Student Attitudes.” Journal of Translator Education and Translation Studies1(1): 33–55.
    [Google Scholar]
  57. Yang, Yanxia, and Xiangling Wang
    2019 “Modeling the Intention to Use Machine Translation for Student Translators: An Extension of Technology Acceptance Model.” Computers and Education1331: 116–126. 10.1016/j.compedu.2019.01.015
    https://doi.org/10.1016/j.compedu.2019.01.015 [Google Scholar]
  58. Zhang, Ping, and Na Li
    2005 “The Importance of Affective Quality.” Communications of the ACM48 (9): 105–108. 10.1145/1081992.1081997
    https://doi.org/10.1145/1081992.1081997 [Google Scholar]
/content/journals/10.1075/ttmc.00152.san
Loading
/content/journals/10.1075/ttmc.00152.san
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): emotional narratives; machine translation; post-editing
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error