1887
Volume 11, Issue 1
  • ISSN 2352-1805
  • E-ISSN: 2352-1813
USD
Buy:$35.00 + Taxes

Abstract

Abstract

Machine translation (MT) has surpassed all quality expectations and its use has increased exponentially in recent years (Forcada 2017; Sánchez-Gijón, Moorkens, and Way 2019). One of the most frequent MT applications is the translation of user-generated content (UGC) and, more specifically, reviews on tourism portals such as Tripadvisor. Several authors agree that the degree of trust and credibility of a review, as the most important characteristics of UGC, depends largely on the perceived naturalness and authenticity of its writing (Pollach 2006; Schemmann 2011; Vásquez 2014). The review’s influence on the product’s reputation and on the purchase decision-making of future users has been fully demonstrated. Since review platforms make reviews available to users in different languages translated by MT, the quality of MT output should be studied from the point of view of the text’s adaptation to the requirements of a specific audience and market, following the principles elaborated in localization studies. The aim of this paper is to analyze the behavior of neural MT of user-generated content from the perspective of localization to check whether MT quality depends exclusively on linguistic or stylistic aspects or whether the aspects studied by localization, such as linguistic and cultural appropriateness for the target user, also play a decisive role. We compiled an English-Spanish parallel corpus consisting of 250 reviews retrieved from Tripadvisor. The reviews were originally written in English and MT processed into Spanish. Then the quality of the MT output was evaluated following two parameters: correctness and acceptance according to MT quality scales and localization guidelines.

Loading

Article metrics loading...

/content/journals/10.1075/ttmc.00153.ros
2025-01-07
2025-01-20
Loading full text...

Full text loading...

References

  1. Arevalillo Doval, Juan J.
    2000 “La Localización: concepto, nuevas tecnologías y requisitos.” InTraducción y nuevas tecnologías, herramientas auxiliares del traductor: encuentros en torno a la traducción, ed. byCarmen Valero Garcés, and Isabel de la Cruz Cabanillas, 115–124. Alcalá de Henares: Universidad de Alcalá de Henares.
    [Google Scholar]
  2. Arivazhagan, Naveen, Ankur Bapna, Orhan Firat, Roee Aharoni, Melvin Johnson, and Wolfgang Macherey
    2019 “The Missing Ingredient in Zero-Shot Neural Machine Translation.” arXiv. https://arxiv.org/abs/1903.07091
    [Google Scholar]
  3. Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio
    2014 “Neural Machine Translation by Jointly Learning to Align and Translate.” arXiv. https://arxiv.org/abs/1409.0473
    [Google Scholar]
  4. Banerjee, Snehasish, and Alton Y. K. Chua
    2014 “A Linguistic Framework to Distinguish Between Genuine and Deceptive Online Reviews.” InProceedings of The International MultiConference of Engineers and Computer Scientists 2014, ed. bySio Iong Ao, Oscar Castillo, Craig Douglas, David Dagan Feng, and Jeong-A. Lee, 501–506. Hong Kong: International Association of Engineers. https://www.iaeng.org/publication/IMECS2014/IMECS2014_pp501-506.pdf
    [Google Scholar]
  5. Bernal-Merino, Miguel A.
    2013 The Localisation of Video Games. PhD diss.Imperial College of London. https://pdfs.semanticscholar.org/01b5/3b858c0ae8e224862b5c2d05613a3796f61d.pdf
  6. Cadieux, Pierre, and Bert Esselink
    2004 “GILT: Globalization, Internationalization, Localization, Translation.” Globalization Insider11(1): 1–5.
    [Google Scholar]
  7. Candel-Mora, Miguel A.
    2015 “Evaluation of English to Spanish MT Output of Tourism 2.0 Consumer-Generated Reviews with Post-Editing Purposes.” InProceedings of the 37th Conference Translating and the Computer, ed. byJoao Esteves-Ferreira, Juliet Macan, Ruslan Mitkov, and Olaf-Michael Stefanov, 37–47. London: AsLing. https://www.asling.org/tc37/wp-content/uploads/TC37-london2015.pdf
    [Google Scholar]
  8. Castilho, Sheila, Joss Moorkens, Federico Gaspari, Iacer Calixto, John Tinsley, and Andy Way
    2017 “Is Neural Machine Translation the New State of the Art?.” The Prague Bulletin of Mathematical Linguistics108 (1): 109–120. 10.1515/pralin‑2017‑0013
    https://doi.org/10.1515/pralin-2017-0013 [Google Scholar]
  9. Castilho, Sheila, Stephen Doherty, Federico Gaspari, and Joss Moorkens
    2018 “Approaches to Human and Machine Translation Quality Assessment: From Principles to Practice.” InTranslation Quality Assessment: From Principles to Practice, ed. byJoss Moorkens, Sheila Castilho, Federico Gaspari, and Stephen Doherty, 9–38, Springer, Cham. 10.1007/978‑3‑319‑91241‑7_2
    https://doi.org/10.1007/978-3-319-91241-7_2 [Google Scholar]
  10. Doherty, Stephen
    2017 “Issues in Human and Automatic Translation Quality Assessment.” InHuman Issues in Translation Technology, ed. byDorothy Kenny, 131–148. London: Routledge.
    [Google Scholar]
  11. Esselink, Bert
    2003 “The Evolution of Localization.” Multilingual Computing and Technology14 (5): 4–7.
    [Google Scholar]
  12. Fiederer, Rebecca, and Sharon O’Brien
    2009 “Quality and Machine Translation: A Realistic Objective.” The Journal of Specialised Translation11(1): 52–74.
    [Google Scholar]
  13. Forcada, Mikel L.
    2017 “Making Sense of Neural Machine Translation.” Translation Spaces6(2): 291–309. 10.1075/ts.6.2.06for
    https://doi.org/10.1075/ts.6.2.06for [Google Scholar]
  14. Görög, Attila
    2014 “Quality Evaluation Today: The Dynamic Quality Framework.” InProceedings of Translating and the Computer 36, ed. byJoão Esteves-Ferreira, Juliet Macan, Ruslan Mitkov, and Olaf-Michael Stefanov, 155–164. London: AsLing. https://www.asling.org/tc36/wp-content/uploads/TC36-london2014.pdf
    [Google Scholar]
  15. Jean, Sébastien, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio
    2015 “On Using Very Large Target Vocabulary for Neural Machine Translation.” InProceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Volume 1: Long Papers, ed. byChengqing Zong, and Michael Strube, 1–10. Beijing: Association for Computational Linguistics. 10.3115/v1/P15‑1001
    https://doi.org/10.3115/v1/P15-1001 [Google Scholar]
  16. Jiménez-Crespo, Miguel Ángel
    2008El proceso de localización web: estudio contrastivo de un corpus comparable del género sitio web corporativo. PhD diss.Granada: Universidad de Granada.
    [Google Scholar]
  17. 2009 Conventions in Localisation: A Corpus Study of Original Vs. Translated Web Texts. Jostrans: The Journal of Specialized Translation, 121, 79–102.
    [Google Scholar]
  18. Lommel, Arle, Hans Uszkoreit, and Aljoscha Burchardt
    2014 “Multidimensional Quality Metrics (MQM): A Framework for Declaring and Describing Translation Quality Metrics.” Revista Tradumàtica121: 455–463. 10.5565/rev/tradumatica.77
    https://doi.org/10.5565/rev/tradumatica.77 [Google Scholar]
  19. O’Brien, Sharon, Rahzeb Choudhury, Jaap van der Meer, and Nora Aranberri [Google Scholar]
  20. O’Hagan, Minako, and David Ashworth
    2002Translation-Mediated Communication in a Digital World. Facing the Challenges of Globalization and Localization. Clevedon: Multilingual Matters.
    [Google Scholar]
  21. Pagans, Marta
    2002 “Localització, ens ubiquem?.” Revista Tradumàtica11: 1–4.
    [Google Scholar]
  22. Pérez Fernández, Lucila
    2010 La localización de videojuegos (inglés-español): aspectos técnicos, metodológicos y profesionales. PhD diss. Universidad de Málaga.
  23. Peris-Abril, Álvaro, Miguel Domingo, and Francisco Casacuberta
    2017 “Interactive Neural Machine Translation.” Computer Speech & Language451: 201–220. 10.1016/j.csl.2016.12.003
    https://doi.org/10.1016/j.csl.2016.12.003 [Google Scholar]
  24. Pollach, Irene
    2006 “Electronic Word of Mouth: A Genre Analysis of Product Reviews on Consumer Opinion Web Sites.” InProceedings of the 39th Hawaii International Conference on System Sciences, ed. byRalph Sprague Jr., Vol.31, 1530–1605. Washington D.C.: IEEE Computer Society. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1579393. 10.1109/HICSS.2006.146
    https://doi.org/10.1109/HICSS.2006.146 [Google Scholar]
  25. Pym, Anthony
    2012Teorías contemporáneas de la traducción (exploraciones pedagógicas). Tarragona: Intercultural Studies Group- URV.
    [Google Scholar]
  26. Ricci, Francesco, and René Wietsma
    2006 “Product Reviews in Travel Decision-Making.” InInformation and Communication Technologies in Tourism, ed. byMartin Hitz, Marianna Sigala, and Jamie Murphy, 296–307. Vienna: Springer.
    [Google Scholar]
  27. Sánchez-Gijón, Pilar, Joss Moorkens, and Andy Way
    2019 “Post-Editing Neural Machine Translation Versus Translation Memory Segments.” Machine Translation33(2): 31–59. 10.1007/s10590‑019‑09232‑x
    https://doi.org/10.1007/s10590-019-09232-x [Google Scholar]
  28. Schemmann, Brita
    2011 “A Classification of Presentation Forms of Travel and Tourism-Related Online Consumer Reviews.” e-Review of Tourism Research9 (2): 14–24. https://ertr.tamu.edu/files/2013/02/4.pdf
    [Google Scholar]
  29. Scholand, Michael
    2002 “Localización de Videojuegos.” Revista Tradumàtica11: 1–9.
    [Google Scholar]
  30. Schuster, Mike, Melvin Johnson, and Nikhil Thorat
    2016 “Zero-Shot Translation with Google’s Multilingual Neural Machine Translation System.” Google AI Blog221. https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html
    [Google Scholar]
  31. Tripadvisor
    Tripadvisor. AccessedMarch 10, 2024. https://tripadvisor.mediaroom.com/caen-about-us
  32. Valli, Paola
    2015 “The TAUS Quality Dashboard.” InProceedings of the 37th Conference Translating and the Computer, ed. byJoao Esteves-Ferreira, Juliet Macan, Ruslan Mitkov, and Olaf-Michael Stefanov, 127–136. London: AsLing. https://www.asling.org/tc37/wp-content/uploads/book_of_abstracts_2015.pdf
    [Google Scholar]
  33. Vásquez, Camilla
    2012 “Narrativity and Involvement in Online Consumer Reviews: The Case of Tripadvisor.” Narrative Inquiry22(1): 105–121. 10.1075/ni.22.1.07vas
    https://doi.org/10.1075/ni.22.1.07vas [Google Scholar]
  34. 2014 ““Usually Not One to Complain But…”: Constructing Identities in User-Generated Online Reviews.” InThe Language of Social Media, ed. byCaroline Tagg, and Philip Seargeant, 65–90. London: Palgrave Macmillan. 10.1057/9781137029317_4
    https://doi.org/10.1057/9781137029317_4 [Google Scholar]
/content/journals/10.1075/ttmc.00153.ros
Loading
/content/journals/10.1075/ttmc.00153.ros
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): localization; machine translation; quality; user generated content
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error