1887
Volume 11, Issue 1
  • ISSN 2352-1805
  • E-ISSN: 2352-1813
USD
Buy:$35.00 + Taxes

Abstract

Abstract

This paper analyses the effectiveness of neural machine translation when applied to literary translation and, more specifically, to the translation of collocations, one of the most difficult aspects in machine translation (Corpas-Pastor 2015; Shraiden and Mahadin 2015). Literary translation continues to constitute one of the biggest challenges for machine translation (Toral and Way 2018), where cohesion errors are amongst the most frequent (Voigt and Jurafsky 2012). A comparative analysis of the translation of the first chapter of the world literature masterpiece — known as in English — was carried out, paying close attention to collocations. The human translation done by Tom Lathrop () was compared to the target texts obtained with the two biggest neural machine translation systems today, Google Translate and DeepL, to see which provided more accurate results. The results confirm that neural machine translation offers highly reliable results. On a quantitative level the margins are very narrow when determining which system, DeepL or Google Translate, is better. DeepL scored better in terms of accuracy and recall, but in the BLEU metrics Google Translate scored 28.10 and DeepL 26.63. On a qualitative level and from a subjective point of view, we found DeepL’s translation to be somewhat more fluid and natural than Google Translate’s.

Loading

Article metrics loading...

/content/journals/10.1075/ttmc.00154.iba
2025-01-07
2025-01-20
Loading full text...

Full text loading...

References

  1. Allen, Esther, Mary Ann Caws, Peter Constantine, Edith Grosman, Nancy Kline, Burton Pike, Damian Searls, Karen Van Dyck, Alyson Waters, Alyson, Roger Celestin, and Charles LeBel
    2015 “Lost in Translation? Found in Translation? Neither? Both?.” The Quiet Corner Interdisciplinary Journal1 (1): 7. https://digitalcommons.uconn.edu/tqc/vol1/iss1/7
    [Google Scholar]
  2. Barbieri, Alberto
    2019 “Traductores e intérpretes, ¿las próximas víctimas de la inteligencia artificial?.” La Vanguardia, June 1st. https://www.lavanguardia.com/tecnologia/20190601/462559134761/traductores-interpretes-victimas-inteligencia-artificial-google-translate.html
    [Google Scholar]
  3. Bernardini, Silvia
    2007 “Collocations in Translated Language. Combining Parallel, Comparable and Reference Corpora. UCREL Corpus Research Center.” https://ucrel.lancs.ac.uk/publications/CL2007/pa-per/15_Paper.pdf
  4. Bosque, Ignacio
    2006Diccionario combinatorio práctico del español contemporáneo. Madrid: Ediciones SM.
    [Google Scholar]
  5. Cervantes Saavedra, Miguel de
    1605El ingenioso hidalgo Don Quixote de la Mancha. Madrid: Juan de la Cuesta.
    [Google Scholar]
  6. Corpas-Pastor, Gloria
    2015 “Translating English Verbal Collocations into Spanish: On Distribution and other Relevant Differences Related to Diatopic Variation.” Lingvisticæ Investigationes381: 229–262. 10.1075/li.38.2.03cor
    https://doi.org/10.1075/li.38.2.03cor [Google Scholar]
  7. De Aguiar e Silva, Víctor Manuel
    1986Teoría de la literatura. Madrid: Gredos.
    [Google Scholar]
  8. Díaz Prieto, Petra
    2012Luces y sombras en los 75 años de traducción automática. León: Universidad de León.
    [Google Scholar]
  9. Firth, John Rupert
    1957Papers in Linguistics 1934–1951. London: London University Press.
    [Google Scholar]
  10. Grossman, Edith
    2010Why Translation Matters. Yale: Yale University Press.
    [Google Scholar]
  11. Hurtado Albir, Amparo
    2018Traducción y traductología. Introducción a la traductología. Madrid: Cátedra.
    [Google Scholar]
  12. McCarthy, Michael
    1990Vocabulary. Oxford: Oxford University Press.
    [Google Scholar]
  13. Punga, Loredana, and Hortensia Pârlog
    2017 “Difficulties of Translating English Collocations into Romanian.” BAS: a Journal of the Romanian Society of English and American StudiesXXIII1: 256–274.
    [Google Scholar]
  14. Rubio, Isabel
    2019 “El ingeniero que te permite hablar más de 100 idiomas.” El País, November 25th. https://elpais.com/tecnologia/2019/11/25/act-ualidad/1574676898_992149.html
    [Google Scholar]
  15. 2020 “¿Cuál es el mejor traductor?: probamos DeepL, Google Translate y Bing.” El País, May 29th. https://elpais.com/tecnologia/2020-05-29/cual-es-el-mejor-traductor-probamos-deepl-go-ogle-translate-y-bing.html
    [Google Scholar]
  16. Sánchez Pérez, Aquilino
    2010 “Traducción automática, corpus lingüísticos y desambiguación automática de los significados de las palabras.” Lengua, traducción, recepción: en honor de Julio César Santoyo11: 555–587.
    [Google Scholar]
  17. Serrano, Rocío
    2020 “Traducción automática y literatura: ¿enemigas íntimas?.” Vasos Comunicantes. Revista de ACE Traductores541. https://vasoscomunicantes.ace-traductores.org/2020/09/11/traduccion-automatica-y-literatura-enemigas-intimas
    [Google Scholar]
  18. Shiyab, Said, and Michael Stuart Lynch
    2006 “Can Literary Style be Translated?.” Babel52(3): 262–275. 10.1075/babel.52.3.04shi
    https://doi.org/10.1075/babel.52.3.04shi [Google Scholar]
  19. Shraiden, Khetam, and Radwam Salim Mahadin
    2015 “Difficulties and Strategies in Translating Collocations in BBC Political Texts.” Arab World English Journal (AWEJ)6(3): 320–356. 10.24093/awej/vol6no3.21
    https://doi.org/10.24093/awej/vol6no3.21 [Google Scholar]
  20. Toral, Antonio, and Andy Way
    2018 “What Level of Quality Can Neural Machine Translation Attain on Literary Text?.” InTranslation Quality Assessment. Machine Translation: Technologies and Applications, ed. byJoos Moorkens, Sheila Castilho, Federico Gaspari, and Stephen Doherty, 263–287. Dublin: Springer, Cham. 10.1007/978‑3‑319‑91241‑7_12
    https://doi.org/10.1007/978-3-319-91241-7_12 [Google Scholar]
  21. Venegas, René
    2003 “Análisis Semántico Latente: una panorámica de su desarrollo.” Revista Signos36(53): 121–138. 10.4067/S0718‑09342003005300008
    https://doi.org/10.4067/S0718-09342003005300008 [Google Scholar]
  22. Vielma Vinci, Nathalie
    2020 “DeepL: una combinación exitosa entre redes neuronales y datos de calidad.” https://medium.com/qu4nt/deepl-una-combinaci%C3%B3n-exitosaentre-redes-neuronales-y-datos-de-cali-dad-860674af3e12
  23. Voigt, Rob, and Dan Jurafsky
    2012 “Towards a Literary Machine Translation: The Role of Referencial Cohesion.” InProceedings of the NAACL-HLT 2012 Workshop on Computational Linguistics for Literature, ed. byDavid Elson, Anna Kazantseva, Rada Mihalcea, and Stan Szpakowicz, 18–25. Montréal, Canada: Association for Computational Linguistics.
    [Google Scholar]
/content/journals/10.1075/ttmc.00154.iba
Loading
/content/journals/10.1075/ttmc.00154.iba
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): collocations; literary translation; neural machine translation
This is a required field
Please enter a valid email address
Approval was successful
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error