On a certain difference

Guido J. Vanden Wyngaerd

0. Introduction

Indefinite NPs have been assigned various labels, which can, I believe, be reduced to the following three. First, a tradition that goes back to Russell and predicate logic analyses them as existential quantifiers. A second label that has its roots in logic is that of variable (cf. Lewis 1975, Kamp 1981, Heim 1982). Other authors have argued that indefinites are (potentially) referential (e.g. Fodor and Sag 1982). With respect to these labels, it is widely assumed that there is some kind of deep-rooted or fundamental distinction between indefinites with *a* and with *a certain*. For instance, Hornstein (1984) argues that, while NPs with *a* are quantifiers on a par with elements like *every* and *each* and undergo Quantifier Raising (QR), NPs with *a certain* are name-like elements, not undergoing QR. In this paper, I want to show that *a* and *a certain* behave alike in most respects, and that there are consequently no grounds for distinguishing them in terms of their scopal properties. Rather, the difference between them is one of referentiality, in the sense that indefinites with a lot of modifying elements are often understood to be more referential (cf. Fodor and Sag 1982). The adjective *certain* is just one out of a whole range of modifying elements which can serve to make an NP more referential.

1. Widest scope

The most prominent score on which indefinites with *a* and *a certain* have been argued to differ is that of their scope. Whereas the scope of *a* is generally taken to be potentially ambiguous between wide and narrow, the behaviour of the expression *a certain* allegedly illustrates the phenomenon of ‘widest possible scope’: a determiner like *a certain* is said to necessarily take scope over negation, quantifiers and the like. Hintikka (1986:331fn.) observes that while ‘this idea is a firmly entrenched part of linguists’ and logicians’ folklore’, he has been unable to ‘document the sources of this (apparently largely oral) tradition’ (cf. e.g. Evans 1980:343). I shall now present evidence to the effect that this idea had perhaps better stay in the realm of folklore.

The most explicit theory concerning the distinction between *a* and *a certain* has been developed by Hornstein (1984, 1988). He argues that *a* and *a*
certain fall into altogether different quantifier classes, which he divides as follows: *type I quantifiers, type II quantifiers, and type III quantifiers*. Quantifiers of the first class are said to have 'a logical syntax like that of names', in that they 'do not form operator-variable structures and are generally interpreted as having wide scope' (1984:21); they are furthermore assumed to be interpretively independent. The quantifier expression *a certain* is the prototype member of the class of type I quantifiers. The type II quantifiers, by contrast, like *a, some, or every*, do form operator-variable structures, i.e. they undergo QR, and adjoin to the most local S, giving rise to dependent readings. Type III quantifiers are like type II quantifiers, but they can take scope higher than the most local S (e.g. French *personne, wh*-in-situ). Interpretive (in)dependence and scope relate as follows: interpretively independent elements always take wide scope, whereas interpretively dependent elements may take either wide or narrow scope with respect to other logical elements, depending on their relative positions at LF.

Let us first discuss Hornstein's claim that *a certain*, as a type I quantifier, invariably takes widest scope. Consider (1):

(1) a Everyone loves a certain woman
 b Everybody loves somebody

Hornstein (1984:21) claims that (1a) is not ambiguous, unlike the closely related (1b). In order to rule out the generic reading that (1a) invites, it is better to consider an example that does not allow this generic reading:

(2) Every boy in our class is dating a certain girl

It seems to me that in (2) the object can certainly be understood as having narrow scope with respect to the subject, i.e. such that the number of girls varies with the number of boys. Cormack and Kempson (1991:5) give an analogous example:

(3) Every professor accused a (specific) student of cheating and I know who the accused were but I'm not going to tell you

They observe that the indefinite can take narrow scope with respect to the matrix subject. It seems to me this reading remains with *certain* substituted for *specific*. Hintikka (1986) likewise argues, contra Hornstein, that, while *a*
certain may take wide scope over universal quantifiers, it can also take narrow scope; in support of his claim, he provides the following examples:

(4) a According to Freud, every man unconsciously wants to marry a certain woman—his mother
 b Each husband had forgotten a certain date—his wife’s birthday
 c A certain sum of money will be paid for each quantity of this commodity
 d The bank makes a certain profit out of each business transaction. The profit is the greater the larger is the amount of money involved in the transaction.

The examples (4a) and (4b) speak for themselves; Hintikka further argues that the narrow scope reading remains if the final NP (after the dash) is omitted. As far as (4c) is concerned, Hornstein (1988), in a reply to Hintikka, argues that the sum of money that is paid necessarily has to be the same amount for each quantity, and that this shows that a certain must take wide scope. He perceives a contrast between (4c) and (5), where the amount paid may vary with each quantity:

(5) A sum of money will be paid for each quantity of this commodity

Likewise for (4d), where, although the absolute amount of the profit may vary for each business transaction, the percentage must, according to Hornstein, remain the same. Even granting that Hornstein's intuitions on these cases were correct, this does not seem to me to invalidate Hintikka's argument. In order to assess both claims, we need to know what is understood by the notion 'narrow scope' that figures in them. Let us therefore consider the question what it means for a quantifier to have narrow scope. I want to argue that the essential fact about narrow scope indefinites is that they are inter­preted as being referentially dependent. What this means is that their reference depends on that of another NP. An example is given in (6):

(6) Each student in the class read one poem

The interpretation of the object NP one poem depends on the interpretation of the universally quantified NP; thus, if there are 12 students in the class, the number of poems likewise equals 12, and so forth. There is, in other words, a 'multiplication effect': although the object is singular in this case, it does not need to refer to just one entity; rather, it refers to at most as many entities as the subject ultimately refers to. The counterpart of referential dependence is referential independence. Following Van der Putten (1988), I take indefinites to be ambiguous between a dependent and an independent reading: the latter
accounts for the so-called wide-scope reading for the indefinite in (6). This analysis of the wide and narrow scope readings of (6) will become relevant below, when I shall discuss the examples (15) and (16).

If we understand narrow scope in the sense of referential dependence rather than in Hornstein's sense, it becomes obvious that we observe in (4c) the same effect of referential dependence that can be observed in (6). That is, the number of sums paid varies with the number of quantities of the commodity; if there are five such quantities, five sums will be paid, and so on. Likewise in (4d): if there are 300 business transactions, the bank makes a profit 300 times. Sameness or difference of an absolute amount or a percentage play no role at all, as long as the subject NP is referentially dependent on the universal quantifier as in the simple case in (6). I conclude that a certain in Hinttika's examples is referentially dependent on the universal quantifier, or, in more traditional terms, has narrow scope with respect to the universal quantifier.

A related difficulty for Hornstein's claim is raised by the fact that it may not always be easy to determine what constitutes the same amount, an essential concept in his analysis. He admits that sameness cannot be understood as sameness in an absolute sense, but may also involve sameness of a percentage and consequent variation in the absolute amount. But now consider the following situation: suppose the bank makes a 10% profit out of each business transaction involving less than $5,000, 7% for transactions involving between $5,000 and $10,000, and 5% over $10,000. It seems to me that (4d) could very well describe such a situation, although there seems to be no sense of sameness in which the amounts can be said to be the same for each business transaction. The adjective certain merely indicates that the relevant sum is not random but somehow fixed. Therefore, sameness or difference of the amounts involved is not what distinguishes (5) and (4d); even in Hornstein's interpretation of wide scope, a certain does not necessarily have wide scope.

There is one area where the claim that a certain needs to take wide scope does seem to hold up. This involves interactions with negation, as in the following example:

(7) Sam didn't kiss a certain woman

The most neutral reading for this sentence is one where the object takes scope over the negation, i.e. 'there is a certain woman that Sam didn't kiss.'

2 The concept of referential dependence employed here should not be confused with that of Evans (1980). It does, however, bear some resemblance to the concept of interpretive (in)dependence that is found in May (1985) and Hornstein (1984).
However, this in itself does not motivate the conclusion that *a certain* belongs to a special class of quantifiers, the type I quantifiers, particularly in the light of the evidence just considered. In fact, an alternative explanation for this fact is available. This explanation assumes that *a certain* is a Positive Polarity Item (henceforth PPI; on PPIs, see Baker 1970; Ladusaw 1980; Seuren 1976; Van der Wouden 1985). PPIs normally cannot occur in the syntactic scope of a negation; still, there are certain contexts and interpretations under which this constraint is relaxed. Thus a PPI dominated by a negation may save itself by taking scope over the negation, as in (8):

(8) Sam didn't kiss several students

This sentence, with the PPI *several*, cannot be interpreted with the negation having scope over the object (*not-several*), but only with the object taking scope over the negation (*several-not*). The same holds true in (7).

Another context in which NEG-PPI configurations can become acceptable is one that Seuren (1976, 1985) calls echo negation. This context involves the denial of a previous assertion or existing presupposition, as in the following dialogue (small caps indicate stress):

(9) A: John has already talked to the students
 B: No, John *HASN'T already talked to the students

Whereas in isolation (9b) would be unacceptable because the PPI *already* occurs in the scope of *not*, (9b) is acceptable in the context given, i.e. when negating a previous utterance or an existing presupposition.\(^3\) The echo interpretation often requires some stress on the negative, in this case the auxiliary. Another context that allows the occurrence of PPIs involves contrastive stress on the PPI; this is illustrated in (10):

(10) John doesn't *MOSTLY* go to school by bycicle, he only *SOMETIMES* does so

Again the PPI *mostly* is normally incapable of appearing under negation, but it is in contrastive contexts as in (10).

\(^3\) Ladusaw (1980) uses a different terminology for describing the same phenomenon, in making a distinction between "negative sentences" (i.e. normal negation) and sentences which are "denials of affirmative assertions" (echo negation). Thus whereas 9B is a denial of the affirmative assertion 9A, the corresponding "negative sentence" is given in (i):

(i) John hasn't talked to the students yet

Also see Horn (1985;1989) on metalinguistic negation.
Returning to (7), we see that it also becomes acceptable as a case of echo negation or a denial of an affirmative assertion, as in the dialogue in (11); likewise, (7) is perfectly acceptable in a contrastive context, as in (12):

(11) A: Sam kissed a certain woman
B: No, Sam DIDN'T kiss a certain woman
(12) Sam didn’t kiss a certain WOMAN, he kissed a certain MAN

An interesting observation made by Seuren with respect to echo negation is that it is only possible if the negation is in its ‘canonical position’, which in English is a position adjacent to the auxiliary. For instance, consider (13):

(13) *Not several students were kissed by Sam

Whereas (8) is acceptable as a case of echo negation, no such interpretation is available for (13), i.e. (13) is bad regardless of the context; since the negation not does not occur in its ‘canonical position’, (13) is uninterpretable as a case of echo negation (compare several to a non-PPI determiner like many in this respect, which yields a perfectly acceptable (13) variant).

Once more we see that a certain behaves like other PPIs in not being able to occur in non-canonical position when negated:

(14) *Not a certain woman was kissed by Sam

This is a strong piece of evidence in support of the claim that indefinite NPs with a certain are PPIs, and moreover a fact that is not expected under Hornstein’s analysis.

In sum, the fact that a certain admits narrow scope readings with respect to universal quantifiers confirms the prediction made by our approach in terms of PPI-hood, as opposed to one like Hornstein’s in terms of type I quantifiers, in that a certain behaves differently under negation and universal quantifiers: with regard to negation a certain cannot take narrow scope, but with respect to (universal) quantifiers, it can.4

4 In Vanden Wyngaerd (1992) I argue that indefinites with a can likewise be characterised as PPIs. The investigative reader can, by substituting a for a certain in the relevant examples, establish that a has PPI properties. Limitations of space prevent me from discussing this issue in full here.
2. Other differences between *a* and *a certain*

In this section, I shall attempt to refute Hornstein's further arguments aimed at demonstrating a fundamental distinction between *a* and *a certain*. Following Evans (1977), Hornstein (1988:102) notes contrasts like the following between *a* and *a certain*, contrasts which he attributes to the alleged referential independence of a quantifier like *a certain*:

(15) a *Everyone drew a car;* and John photographed it.
 b Everyone drew a certain car; and John photographed it.

(16) a *Every soldier slept under a tree;* Did Bill sleep under it too?
 b Every soldier slept under a certain tree; Did Bill sleep under it too?

That is, NPs with *a certain* receive a name-like interpretation, whereas NPs with *a* form operator-variable structures at LF. From this difference, Hornstein argues, the difference in the above examples follows. However, the notion of referential dependence as described above can be shown to give an account of the relevant facts, as well as others not considered by Hornstein.

Consider (15a) first: there is a reading of this sentence in which the indefinite NP is referentially dependent on the universally quantified NP in the manner described in section 1 above; that is, if there are eleven people drawing, eleven cars are drawn, etc. Under this reading, it is impossible to refer back to it by means of the pronoun *it*. However, it is by no means necessary that *a car* have a dependent interpretation; this is straightforwardly the case in a sentence like the following:

(17) Sam drew a car; and John photographed it.

But this independent reading for the indefinite is also available in (15a), for instance when everybody has collaborated on drawing a single car; in this case, the pronoun *it* may felicitously be used to refer back to the car, i.e. under this interpretation (15a) becomes acceptable. An anonymous reviewer points out that this independent reading is more readily available in the following example:

(18) Four men lifted a table; (and John photographed it.)

Next consider (15b): though the independent reading for *a certain car* is the one that is most readily available, the dependent reading is not excluded, as we saw above (cf. the examples in (4)), i.e. (15b) has an interpretation in which the number of cars varies with the number of people drawing (e.g. when *a certain car* is taken to refer to a certain type or make of car). In the
latter case, coreference with *it* becomes unacceptable, as it is in the depend­ent reading of (15a). In other words, on closer examination, i.e. once one considers them under the relevant reading (dependent or independent), (15a) and (15b) turn out to behave exactly alike. Similar remarks can be made for (16).

A second contrast that Hornstein notes between the type I quantifier *a certain* and the type II quantifier *a* involves Weak Crossover (WCO):

(19) a *His, heavy case-load made a lawyer, angry
 b His, heavy case-load made a certain lawyer angry

The parallel that Hornstein apparently seeks to establish is with the examples in (20):

(20) a *His, mother kissed every studenti
 b His, mother kissed Billi

Whereas a name can be coindexed with a non-c-commanding pronoun to its left, a quantifier cannot, a phenomenon known as Weak Crossover. Hornstein’s examples in (19) would then show that *a lawyer* is a quantifier, whereas *a certain lawyer* is a name. However, as Pesetsky (1990) notes, the make-angry context, as well as the others that Hornstein discusses, is one that displays the binding asymmetry familiar from the so-called Experiencer predicates. One example Pesetsky gives is the following:

(21) Each other’s remarks made John and Mary angry

One therefore expects a quantifier in object position to be able to bind a subject-contained pronoun, as in the following examples from the literature (Guéron 1986:100, Reinhart 1983:82, Higginbotham 1980:668n., and Postal 1970:460, respectively):

(22) a Sa, santé inquiète chaque homme d’état,i
 His,i health worries each statesman,i
 b *Sa, femme a insulté chaque homme d’état,i
*His,i wife insulted each statesman,i

(23) That people hate him,i disturbs every president,i
(24) The teacher’s writing to his,i father annoyed every child,i in the class
(25) My discovering that their,i daughters were pregnant worried some old ladies,i
In so far as one were to accept Hornstein's judgment on (19a), then, it would seem to be a problem for his analysis rather than a confirmation of it. Furthermore, in cases where no binding asymmetry is present, indefinites do not give rise to very strong crossover effects, as is observed by Higginbotham (1987:44); he notes 'the attenuation of weak crossover effects for pronominals with indefinite antecedents', and quotes the following example:

(26) His father hates a (certain) boy I know

In fact, there seems to be an inverse relationship between the referentiality of the indefinite NP and the presence of weak crossover effect: the more referential the NP is, the less clear the weak crossover effect. This observation immediately provides an explanation for the contrast that one observes between indefinite NPs with and without certain, in that the former are more referential and therefore less likely to give rise to weak crossover. But it is clear that the determiner-adjective combination a certain occupies no privileged position, and is just one of many means of making an NP more referential (cf. Fodor and Sag 1982).

In our discussion of Hornstein's claims so far, we have mainly focused on cases where a certain takes narrower scope than allowed by his theory. Another problem is raised by the fact that NPs with a sometimes receive wider scope than his theory permits. In particular, as noted by Fodor and Sag (1982), the scope of a does not seem to be restricted by scope islands, which do restrict the scope of other quantifiers. I will only discuss one of the examples given by Fodor and Sag here, which involves if-clauses.

(27) If a friend of mine from Texas had died in the fire, I would have inherited a fortune (but he didn't, so I didn't inherit anything)

It is clear that the indefinite a friend of mine from Texas in (27) may have a scope outside the if-clause, i.e. (27) may be understood to mean that there is a friend of mine from Texas such that, if he had died in the fire, I would have inherited everything. This is despite the fact that, as Fodor and Sag show, if-clauses are normally strong islands for quantifiers.

Other cases where indefinites behave differently from other type II quantifiers include the following (cf. Hornstein 1984:22, to whom the examples in (28) are due):

(28) a *John likes every dog and it likes him
 b *John likes every dog and Sam feeds it
(29) a John likes a dog and it likes him
 b John likes a dog and Sam feeds it
(30) a A woman who knew every/no magician brought him to the party
 b A woman who knew a magician brought him to the party

(Heim 1982:213)

These would likewise have to be analysed as involving a name-like a-NP, a possibility that should, however, be excluded on Hornstein's account. In fact, as Heim (1982) points out, these facts are a traditional difficulty for the Russellian analysis of indefinite NPs as existential quantifiers.

3. Conclusion

In this paper, I have argued that no distinction in terms of scope should be made between a and a certain. I have argued that, when the wide-narrow scope distinction is viewed as a distinction between referential independence and referential dependence, the grounds for making such a distinction disappear. Remaining properties of a and a certain, which revealed a contrast between the two elements and which could not be explained in terms of referential (in)dependence, were argued to be explainable in terms of the hypothesis that a certain is a PPI. Finally, I discussed certain cases where indefinites with a took a scope wider than one would expect if it were a true quantifier. This also supported the claim that it behaves no differently from a certain in terms of its scope.

References

